d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2xC4xC44 | 352 | C2xC4xC44 | 352,149 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C4xC44):1C2 = C42:2D11 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):1C2 | 352,71 | |
(C4xC44):2C2 = C11xC42:C2 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):2C2 | 352,152 | |
(C4xC44):3C2 = C11xC42:2C2 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):3C2 | 352,161 | |
(C4xC44):4C2 = C4:D44 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):4C2 | 352,69 | |
(C4xC44):5C2 = C4.D44 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):5C2 | 352,70 | |
(C4xC44):6C2 = D44:1C4 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 88 | 2 | (C4xC44):6C2 | 352,11 |
(C4xC44):7C2 = C4xD44 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):7C2 | 352,68 | |
(C4xC44):8C2 = C42xD11 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):8C2 | 352,66 | |
(C4xC44):9C2 = C42:D11 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):9C2 | 352,67 | |
(C4xC44):10C2 = C11xC4wrC2 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 88 | 2 | (C4xC44):10C2 | 352,53 |
(C4xC44):11C2 = D4xC44 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):11C2 | 352,153 | |
(C4xC44):12C2 = C11xC4.4D4 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):12C2 | 352,159 | |
(C4xC44):13C2 = C11xC4:1D4 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 176 | (C4xC44):13C2 | 352,162 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C4xC44).1C2 = C11xC8:C4 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).1C2 | 352,46 | |
(C4xC44).2C2 = C44:2Q8 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).2C2 | 352,64 | |
(C4xC44).3C2 = C44.6Q8 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).3C2 | 352,65 | |
(C4xC44).4C2 = C44:C8 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).4C2 | 352,10 | |
(C4xC44).5C2 = C4xDic22 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).5C2 | 352,63 | |
(C4xC44).6C2 = C4xC11:C8 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).6C2 | 352,8 | |
(C4xC44).7C2 = C42.D11 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).7C2 | 352,9 | |
(C4xC44).8C2 = C11xC4:C8 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).8C2 | 352,54 | |
(C4xC44).9C2 = Q8xC44 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).9C2 | 352,154 | |
(C4xC44).10C2 = C11xC42.C2 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).10C2 | 352,160 | |
(C4xC44).11C2 = C11xC4:Q8 | φ: C2/C1 → C2 ⊆ Aut C4xC44 | 352 | (C4xC44).11C2 | 352,163 |