Extensions 1→N→G→Q→1 with N=C4xC44 and Q=C2

Direct product G=NxQ with N=C4xC44 and Q=C2
dρLabelID
C2xC4xC44352C2xC4xC44352,149

Semidirect products G=N:Q with N=C4xC44 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4xC44):1C2 = C42:2D11φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):1C2352,71
(C4xC44):2C2 = C11xC42:C2φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):2C2352,152
(C4xC44):3C2 = C11xC42:2C2φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):3C2352,161
(C4xC44):4C2 = C4:D44φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):4C2352,69
(C4xC44):5C2 = C4.D44φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):5C2352,70
(C4xC44):6C2 = D44:1C4φ: C2/C1C2 ⊆ Aut C4xC44882(C4xC44):6C2352,11
(C4xC44):7C2 = C4xD44φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):7C2352,68
(C4xC44):8C2 = C42xD11φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):8C2352,66
(C4xC44):9C2 = C42:D11φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):9C2352,67
(C4xC44):10C2 = C11xC4wrC2φ: C2/C1C2 ⊆ Aut C4xC44882(C4xC44):10C2352,53
(C4xC44):11C2 = D4xC44φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):11C2352,153
(C4xC44):12C2 = C11xC4.4D4φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):12C2352,159
(C4xC44):13C2 = C11xC4:1D4φ: C2/C1C2 ⊆ Aut C4xC44176(C4xC44):13C2352,162

Non-split extensions G=N.Q with N=C4xC44 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4xC44).1C2 = C11xC8:C4φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).1C2352,46
(C4xC44).2C2 = C44:2Q8φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).2C2352,64
(C4xC44).3C2 = C44.6Q8φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).3C2352,65
(C4xC44).4C2 = C44:C8φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).4C2352,10
(C4xC44).5C2 = C4xDic22φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).5C2352,63
(C4xC44).6C2 = C4xC11:C8φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).6C2352,8
(C4xC44).7C2 = C42.D11φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).7C2352,9
(C4xC44).8C2 = C11xC4:C8φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).8C2352,54
(C4xC44).9C2 = Q8xC44φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).9C2352,154
(C4xC44).10C2 = C11xC42.C2φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).10C2352,160
(C4xC44).11C2 = C11xC4:Q8φ: C2/C1C2 ⊆ Aut C4xC44352(C4xC44).11C2352,163

׿
x
:
Z
F
o
wr
Q
<