Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Dic22

Direct product G=N×Q with N=C2 and Q=C2×Dic22
dρLabelID
C22×Dic22352C2^2xDic22352,173


Non-split extensions G=N.Q with N=C2 and Q=C2×Dic22
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Dic22) = C4×Dic22central extension (φ=1)352C2.1(C2xDic22)352,63
C2.2(C2×Dic22) = C2×Dic11⋊C4central extension (φ=1)352C2.2(C2xDic22)352,118
C2.3(C2×Dic22) = C2×C44⋊C4central extension (φ=1)352C2.3(C2xDic22)352,120
C2.4(C2×Dic22) = C442Q8central stem extension (φ=1)352C2.4(C2xDic22)352,64
C2.5(C2×Dic22) = C44.6Q8central stem extension (φ=1)352C2.5(C2xDic22)352,65
C2.6(C2×Dic22) = C22⋊Dic22central stem extension (φ=1)176C2.6(C2xDic22)352,73
C2.7(C2×Dic22) = C44⋊Q8central stem extension (φ=1)352C2.7(C2xDic22)352,83
C2.8(C2×Dic22) = C44.3Q8central stem extension (φ=1)352C2.8(C2xDic22)352,85
C2.9(C2×Dic22) = C44.48D4central stem extension (φ=1)176C2.9(C2xDic22)352,119

׿
×
𝔽