Extensions 1→N→G→Q→1 with N=C2×C4 and Q=Dic11

Direct product G=N×Q with N=C2×C4 and Q=Dic11
dρLabelID
C2×C4×Dic11352C2xC4xDic11352,117

Semidirect products G=N:Q with N=C2×C4 and Q=Dic11
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊Dic11 = C23⋊Dic11φ: Dic11/C11C4 ⊆ Aut C2×C4884(C2xC4):Dic11352,40
(C2×C4)⋊2Dic11 = C22.C42φ: Dic11/C22C2 ⊆ Aut C2×C4352(C2xC4):2Dic11352,37
(C2×C4)⋊3Dic11 = C2×C44⋊C4φ: Dic11/C22C2 ⊆ Aut C2×C4352(C2xC4):3Dic11352,120
(C2×C4)⋊4Dic11 = C23.21D22φ: Dic11/C22C2 ⊆ Aut C2×C4176(C2xC4):4Dic11352,121

Non-split extensions G=N.Q with N=C2×C4 and Q=Dic11
extensionφ:Q→Aut NdρLabelID
(C2×C4).Dic11 = C44.10D4φ: Dic11/C11C4 ⊆ Aut C2×C41764(C2xC4).Dic11352,42
(C2×C4).2Dic11 = C42.D11φ: Dic11/C22C2 ⊆ Aut C2×C4352(C2xC4).2Dic11352,9
(C2×C4).3Dic11 = C44⋊C8φ: Dic11/C22C2 ⊆ Aut C2×C4352(C2xC4).3Dic11352,10
(C2×C4).4Dic11 = C44.55D4φ: Dic11/C22C2 ⊆ Aut C2×C4176(C2xC4).4Dic11352,36
(C2×C4).5Dic11 = C44.C8φ: Dic11/C22C2 ⊆ Aut C2×C41762(C2xC4).5Dic11352,18
(C2×C4).6Dic11 = C2×C44.C4φ: Dic11/C22C2 ⊆ Aut C2×C4176(C2xC4).6Dic11352,116
(C2×C4).7Dic11 = C4×C11⋊C8central extension (φ=1)352(C2xC4).7Dic11352,8
(C2×C4).8Dic11 = C2×C11⋊C16central extension (φ=1)352(C2xC4).8Dic11352,17
(C2×C4).9Dic11 = C22×C11⋊C8central extension (φ=1)352(C2xC4).9Dic11352,115

׿
×
𝔽