Extensions 1→N→G→Q→1 with N=C4×D11 and Q=C4

Direct product G=N×Q with N=C4×D11 and Q=C4
dρLabelID
C42×D11176C4^2xD11352,66

Semidirect products G=N:Q with N=C4×D11 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×D11)⋊1C4 = C4⋊C4×D11φ: C4/C2C2 ⊆ Out C4×D11176(C4xD11):1C4352,86
(C4×D11)⋊2C4 = C4⋊C47D11φ: C4/C2C2 ⊆ Out C4×D11176(C4xD11):2C4352,87
(C4×D11)⋊3C4 = C42⋊D11φ: C4/C2C2 ⊆ Out C4×D11176(C4xD11):3C4352,67

Non-split extensions G=N.Q with N=C4×D11 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×D11).1C4 = M4(2)×D11φ: C4/C2C2 ⊆ Out C4×D11884(C4xD11).1C4352,101
(C4×D11).2C4 = D22.C8φ: C4/C2C2 ⊆ Out C4×D111762(C4xD11).2C4352,4
(C4×D11).3C4 = C2×C88⋊C2φ: C4/C2C2 ⊆ Out C4×D11176(C4xD11).3C4352,95
(C4×D11).4C4 = C16×D11φ: trivial image1762(C4xD11).4C4352,3
(C4×D11).5C4 = C2×C8×D11φ: trivial image176(C4xD11).5C4352,94

׿
×
𝔽