Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C2xC22

Direct product G=NxQ with N=C2xC4 and Q=C2xC22
dρLabelID
C23xC44352C2^3xC44352,188

Semidirect products G=N:Q with N=C2xC4 and Q=C2xC22
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C2xC22) = C11xC22wrC2φ: C2xC22/C11C22 ⊆ Aut C2xC488(C2xC4):1(C2xC22)352,155
(C2xC4):2(C2xC22) = C11x2+ 1+4φ: C2xC22/C11C22 ⊆ Aut C2xC4884(C2xC4):2(C2xC22)352,192
(C2xC4):3(C2xC22) = C22:C4xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4):3(C2xC22)352,150
(C2xC4):4(C2xC22) = D4xC2xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4):4(C2xC22)352,189
(C2xC4):5(C2xC22) = C4oD4xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4):5(C2xC22)352,191

Non-split extensions G=N.Q with N=C2xC4 and Q=C2xC22
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C2xC22) = C11xC4.D4φ: C2xC22/C11C22 ⊆ Aut C2xC4884(C2xC4).1(C2xC22)352,49
(C2xC4).2(C2xC22) = C11xC4.10D4φ: C2xC22/C11C22 ⊆ Aut C2xC41764(C2xC4).2(C2xC22)352,50
(C2xC4).3(C2xC22) = C11xC4:D4φ: C2xC22/C11C22 ⊆ Aut C2xC4176(C2xC4).3(C2xC22)352,156
(C2xC4).4(C2xC22) = C11xC22:Q8φ: C2xC22/C11C22 ⊆ Aut C2xC4176(C2xC4).4(C2xC22)352,157
(C2xC4).5(C2xC22) = C11xC22.D4φ: C2xC22/C11C22 ⊆ Aut C2xC4176(C2xC4).5(C2xC22)352,158
(C2xC4).6(C2xC22) = C11xC4.4D4φ: C2xC22/C11C22 ⊆ Aut C2xC4176(C2xC4).6(C2xC22)352,159
(C2xC4).7(C2xC22) = C11xC42.C2φ: C2xC22/C11C22 ⊆ Aut C2xC4352(C2xC4).7(C2xC22)352,160
(C2xC4).8(C2xC22) = C11xC42:2C2φ: C2xC22/C11C22 ⊆ Aut C2xC4176(C2xC4).8(C2xC22)352,161
(C2xC4).9(C2xC22) = C11xC4:Q8φ: C2xC22/C11C22 ⊆ Aut C2xC4352(C2xC4).9(C2xC22)352,163
(C2xC4).10(C2xC22) = C11xC8:C22φ: C2xC22/C11C22 ⊆ Aut C2xC4884(C2xC4).10(C2xC22)352,171
(C2xC4).11(C2xC22) = C11xC8.C22φ: C2xC22/C11C22 ⊆ Aut C2xC41764(C2xC4).11(C2xC22)352,172
(C2xC4).12(C2xC22) = C11x2- 1+4φ: C2xC22/C11C22 ⊆ Aut C2xC41764(C2xC4).12(C2xC22)352,193
(C2xC4).13(C2xC22) = C4:C4xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).13(C2xC22)352,151
(C2xC4).14(C2xC22) = C11xC42:C2φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4).14(C2xC22)352,152
(C2xC4).15(C2xC22) = D4xC44φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4).15(C2xC22)352,153
(C2xC4).16(C2xC22) = Q8xC44φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).16(C2xC22)352,154
(C2xC4).17(C2xC22) = C11xD4:C4φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4).17(C2xC22)352,51
(C2xC4).18(C2xC22) = C11xQ8:C4φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).18(C2xC22)352,52
(C2xC4).19(C2xC22) = C11xC4wrC2φ: C2xC22/C22C2 ⊆ Aut C2xC4882(C2xC4).19(C2xC22)352,53
(C2xC4).20(C2xC22) = C11xC4.Q8φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).20(C2xC22)352,55
(C2xC4).21(C2xC22) = C11xC2.D8φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).21(C2xC22)352,56
(C2xC4).22(C2xC22) = C11xC8.C4φ: C2xC22/C22C2 ⊆ Aut C2xC41762(C2xC4).22(C2xC22)352,57
(C2xC4).23(C2xC22) = C11xC4:1D4φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4).23(C2xC22)352,162
(C2xC4).24(C2xC22) = C11xC8oD4φ: C2xC22/C22C2 ⊆ Aut C2xC41762(C2xC4).24(C2xC22)352,166
(C2xC4).25(C2xC22) = D8xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4).25(C2xC22)352,167
(C2xC4).26(C2xC22) = SD16xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4176(C2xC4).26(C2xC22)352,168
(C2xC4).27(C2xC22) = Q16xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).27(C2xC22)352,169
(C2xC4).28(C2xC22) = C11xC4oD8φ: C2xC22/C22C2 ⊆ Aut C2xC41762(C2xC4).28(C2xC22)352,170
(C2xC4).29(C2xC22) = Q8xC2xC22φ: C2xC22/C22C2 ⊆ Aut C2xC4352(C2xC4).29(C2xC22)352,190
(C2xC4).30(C2xC22) = C11xC8:C4central extension (φ=1)352(C2xC4).30(C2xC22)352,46
(C2xC4).31(C2xC22) = C11xC22:C8central extension (φ=1)176(C2xC4).31(C2xC22)352,47
(C2xC4).32(C2xC22) = C11xC4:C8central extension (φ=1)352(C2xC4).32(C2xC22)352,54
(C2xC4).33(C2xC22) = M4(2)xC22central extension (φ=1)176(C2xC4).33(C2xC22)352,165

׿
x
:
Z
F
o
wr
Q
<