extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C2xC22) = C11xC4.D4 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 88 | 4 | (C2xC4).1(C2xC22) | 352,49 |
(C2xC4).2(C2xC22) = C11xC4.10D4 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | 4 | (C2xC4).2(C2xC22) | 352,50 |
(C2xC4).3(C2xC22) = C11xC4:D4 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | | (C2xC4).3(C2xC22) | 352,156 |
(C2xC4).4(C2xC22) = C11xC22:Q8 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | | (C2xC4).4(C2xC22) | 352,157 |
(C2xC4).5(C2xC22) = C11xC22.D4 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | | (C2xC4).5(C2xC22) | 352,158 |
(C2xC4).6(C2xC22) = C11xC4.4D4 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | | (C2xC4).6(C2xC22) | 352,159 |
(C2xC4).7(C2xC22) = C11xC42.C2 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 352 | | (C2xC4).7(C2xC22) | 352,160 |
(C2xC4).8(C2xC22) = C11xC42:2C2 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | | (C2xC4).8(C2xC22) | 352,161 |
(C2xC4).9(C2xC22) = C11xC4:Q8 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 352 | | (C2xC4).9(C2xC22) | 352,163 |
(C2xC4).10(C2xC22) = C11xC8:C22 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 88 | 4 | (C2xC4).10(C2xC22) | 352,171 |
(C2xC4).11(C2xC22) = C11xC8.C22 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | 4 | (C2xC4).11(C2xC22) | 352,172 |
(C2xC4).12(C2xC22) = C11x2- 1+4 | φ: C2xC22/C11 → C22 ⊆ Aut C2xC4 | 176 | 4 | (C2xC4).12(C2xC22) | 352,193 |
(C2xC4).13(C2xC22) = C4:C4xC22 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).13(C2xC22) | 352,151 |
(C2xC4).14(C2xC22) = C11xC42:C2 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | | (C2xC4).14(C2xC22) | 352,152 |
(C2xC4).15(C2xC22) = D4xC44 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | | (C2xC4).15(C2xC22) | 352,153 |
(C2xC4).16(C2xC22) = Q8xC44 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).16(C2xC22) | 352,154 |
(C2xC4).17(C2xC22) = C11xD4:C4 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | | (C2xC4).17(C2xC22) | 352,51 |
(C2xC4).18(C2xC22) = C11xQ8:C4 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).18(C2xC22) | 352,52 |
(C2xC4).19(C2xC22) = C11xC4wrC2 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 88 | 2 | (C2xC4).19(C2xC22) | 352,53 |
(C2xC4).20(C2xC22) = C11xC4.Q8 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).20(C2xC22) | 352,55 |
(C2xC4).21(C2xC22) = C11xC2.D8 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).21(C2xC22) | 352,56 |
(C2xC4).22(C2xC22) = C11xC8.C4 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | 2 | (C2xC4).22(C2xC22) | 352,57 |
(C2xC4).23(C2xC22) = C11xC4:1D4 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | | (C2xC4).23(C2xC22) | 352,162 |
(C2xC4).24(C2xC22) = C11xC8oD4 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | 2 | (C2xC4).24(C2xC22) | 352,166 |
(C2xC4).25(C2xC22) = D8xC22 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | | (C2xC4).25(C2xC22) | 352,167 |
(C2xC4).26(C2xC22) = SD16xC22 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | | (C2xC4).26(C2xC22) | 352,168 |
(C2xC4).27(C2xC22) = Q16xC22 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).27(C2xC22) | 352,169 |
(C2xC4).28(C2xC22) = C11xC4oD8 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 176 | 2 | (C2xC4).28(C2xC22) | 352,170 |
(C2xC4).29(C2xC22) = Q8xC2xC22 | φ: C2xC22/C22 → C2 ⊆ Aut C2xC4 | 352 | | (C2xC4).29(C2xC22) | 352,190 |
(C2xC4).30(C2xC22) = C11xC8:C4 | central extension (φ=1) | 352 | | (C2xC4).30(C2xC22) | 352,46 |
(C2xC4).31(C2xC22) = C11xC22:C8 | central extension (φ=1) | 176 | | (C2xC4).31(C2xC22) | 352,47 |
(C2xC4).32(C2xC22) = C11xC4:C8 | central extension (φ=1) | 352 | | (C2xC4).32(C2xC22) | 352,54 |
(C2xC4).33(C2xC22) = M4(2)xC22 | central extension (φ=1) | 176 | | (C2xC4).33(C2xC22) | 352,165 |