Extensions 1→N→G→Q→1 with N=D4 and Q=C2×C22

Direct product G=N×Q with N=D4 and Q=C2×C22
dρLabelID
D4×C2×C22176D4xC2xC22352,189

Semidirect products G=N:Q with N=D4 and Q=C2×C22
extensionφ:Q→Out NdρLabelID
D41(C2×C22) = D8×C22φ: C2×C22/C22C2 ⊆ Out D4176D4:1(C2xC22)352,167
D42(C2×C22) = C11×C8⋊C22φ: C2×C22/C22C2 ⊆ Out D4884D4:2(C2xC22)352,171
D43(C2×C22) = C4○D4×C22φ: trivial image176D4:3(C2xC22)352,191
D44(C2×C22) = C11×2+ 1+4φ: trivial image884D4:4(C2xC22)352,192

Non-split extensions G=N.Q with N=D4 and Q=C2×C22
extensionφ:Q→Out NdρLabelID
D4.1(C2×C22) = SD16×C22φ: C2×C22/C22C2 ⊆ Out D4176D4.1(C2xC22)352,168
D4.2(C2×C22) = C11×C4○D8φ: C2×C22/C22C2 ⊆ Out D41762D4.2(C2xC22)352,170
D4.3(C2×C22) = C11×C8.C22φ: C2×C22/C22C2 ⊆ Out D41764D4.3(C2xC22)352,172
D4.4(C2×C22) = C11×2- 1+4φ: trivial image1764D4.4(C2xC22)352,193

׿
×
𝔽