Extensions 1→N→G→Q→1 with N=C5xC3:Dic3 and Q=C2

Direct product G=NxQ with N=C5xC3:Dic3 and Q=C2
dρLabelID
C10xC3:Dic3360C10xC3:Dic3360,108

Semidirect products G=N:Q with N=C5xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC3:Dic3):1C2 = D5xC3:Dic3φ: C2/C1C2 ⊆ Out C5xC3:Dic3180(C5xC3:Dic3):1C2360,65
(C5xC3:Dic3):2C2 = C30.D6φ: C2/C1C2 ⊆ Out C5xC3:Dic3180(C5xC3:Dic3):2C2360,67
(C5xC3:Dic3):3C2 = C32:7D20φ: C2/C1C2 ⊆ Out C5xC3:Dic3180(C5xC3:Dic3):3C2360,69
(C5xC3:Dic3):4C2 = D30.S3φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3):4C2360,84
(C5xC3:Dic3):5C2 = C32:3D20φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3):5C2360,87
(C5xC3:Dic3):6C2 = C5xS3xDic3φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3):6C2360,72
(C5xC3:Dic3):7C2 = C5xD6:S3φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3):7C2360,74
(C5xC3:Dic3):8C2 = C5xC32:7D4φ: C2/C1C2 ⊆ Out C5xC3:Dic3180(C5xC3:Dic3):8C2360,109
(C5xC3:Dic3):9C2 = C3:S3xC20φ: trivial image180(C5xC3:Dic3):9C2360,106

Non-split extensions G=N.Q with N=C5xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC3:Dic3).1C2 = C15:Dic6φ: C2/C1C2 ⊆ Out C5xC3:Dic3360(C5xC3:Dic3).1C2360,71
(C5xC3:Dic3).2C2 = C32:3Dic10φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3).2C2360,88
(C5xC3:Dic3).3C2 = C5xC32:2C8φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3).3C2360,55
(C5xC3:Dic3).4C2 = (C3xC15):9C8φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3).4C2360,56
(C5xC3:Dic3).5C2 = C5xC32:2Q8φ: C2/C1C2 ⊆ Out C5xC3:Dic31204(C5xC3:Dic3).5C2360,76
(C5xC3:Dic3).6C2 = C5xC32:4Q8φ: C2/C1C2 ⊆ Out C5xC3:Dic3360(C5xC3:Dic3).6C2360,105

׿
x
:
Z
F
o
wr
Q
<