Extensions 1→N→G→Q→1 with N=C184 and Q=C2

Direct product G=N×Q with N=C184 and Q=C2
dρLabelID
C2×C184368C2xC184368,22

Semidirect products G=N:Q with N=C184 and Q=C2
extensionφ:Q→Aut NdρLabelID
C1841C2 = D184φ: C2/C1C2 ⊆ Aut C1841842+C184:1C2368,6
C1842C2 = C184⋊C2φ: C2/C1C2 ⊆ Aut C1841842C184:2C2368,5
C1843C2 = C8×D23φ: C2/C1C2 ⊆ Aut C1841842C184:3C2368,3
C1844C2 = C8⋊D23φ: C2/C1C2 ⊆ Aut C1841842C184:4C2368,4
C1845C2 = D8×C23φ: C2/C1C2 ⊆ Aut C1841842C184:5C2368,24
C1846C2 = SD16×C23φ: C2/C1C2 ⊆ Aut C1841842C184:6C2368,25
C1847C2 = M4(2)×C23φ: C2/C1C2 ⊆ Aut C1841842C184:7C2368,23

Non-split extensions G=N.Q with N=C184 and Q=C2
extensionφ:Q→Aut NdρLabelID
C184.1C2 = Dic92φ: C2/C1C2 ⊆ Aut C1843682-C184.1C2368,7
C184.2C2 = C23⋊C16φ: C2/C1C2 ⊆ Aut C1843682C184.2C2368,1
C184.3C2 = Q16×C23φ: C2/C1C2 ⊆ Aut C1843682C184.3C2368,26

׿
×
𝔽