Extensions 1→N→G→Q→1 with N=A4×C15 and Q=C2

Direct product G=N×Q with N=A4×C15 and Q=C2
dρLabelID
A4×C30903A4xC30360,156

Semidirect products G=N:Q with N=A4×C15 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C15)⋊1C2 = C15×S4φ: C2/C1C2 ⊆ Out A4×C15603(A4xC15):1C2360,138
(A4×C15)⋊2C2 = A4⋊D15φ: C2/C1C2 ⊆ Out A4×C15606+(A4xC15):2C2360,141
(A4×C15)⋊3C2 = A4×D15φ: C2/C1C2 ⊆ Out A4×C15606+(A4xC15):3C2360,144
(A4×C15)⋊4C2 = C3×C5⋊S4φ: C2/C1C2 ⊆ Out A4×C15606(A4xC15):4C2360,139
(A4×C15)⋊5C2 = C3×D5×A4φ: C2/C1C2 ⊆ Out A4×C15606(A4xC15):5C2360,142
(A4×C15)⋊6C2 = C5×C3⋊S4φ: C2/C1C2 ⊆ Out A4×C15606(A4xC15):6C2360,140
(A4×C15)⋊7C2 = C5×S3×A4φ: C2/C1C2 ⊆ Out A4×C15606(A4xC15):7C2360,143


׿
×
𝔽