Extensions 1→N→G→Q→1 with N=C20 and Q=C3⋊S3

Direct product G=N×Q with N=C20 and Q=C3⋊S3
dρLabelID
C3⋊S3×C20180C3:S3xC20360,106

Semidirect products G=N:Q with N=C20 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C201(C3⋊S3) = C60⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C20180C20:1(C3:S3)360,112
C202(C3⋊S3) = C4×C3⋊D15φ: C3⋊S3/C32C2 ⊆ Aut C20180C20:2(C3:S3)360,111
C203(C3⋊S3) = C5×C12⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C20180C20:3(C3:S3)360,107

Non-split extensions G=N.Q with N=C20 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C20.1(C3⋊S3) = C12.D15φ: C3⋊S3/C32C2 ⊆ Aut C20360C20.1(C3:S3)360,110
C20.2(C3⋊S3) = C60.S3φ: C3⋊S3/C32C2 ⊆ Aut C20360C20.2(C3:S3)360,37
C20.3(C3⋊S3) = C5×C324Q8φ: C3⋊S3/C32C2 ⊆ Aut C20360C20.3(C3:S3)360,105
C20.4(C3⋊S3) = C5×C324C8central extension (φ=1)360C20.4(C3:S3)360,36

׿
×
𝔽