Extensions 1→N→G→Q→1 with N=C21 and Q=C3⋊S3

Direct product G=N×Q with N=C21 and Q=C3⋊S3
dρLabelID
C3⋊S3×C21126C3:S3xC21378,56

Semidirect products G=N:Q with N=C21 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C211(C3⋊S3) = C33⋊D7φ: C3⋊S3/C32C2 ⊆ Aut C21189C21:1(C3:S3)378,59
C212(C3⋊S3) = C3×C3⋊D21φ: C3⋊S3/C32C2 ⊆ Aut C21126C21:2(C3:S3)378,57
C213(C3⋊S3) = C7×C33⋊C2φ: C3⋊S3/C32C2 ⊆ Aut C21189C21:3(C3:S3)378,58

Non-split extensions G=N.Q with N=C21 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
C21.1(C3⋊S3) = C3⋊D63φ: C3⋊S3/C32C2 ⊆ Aut C21189C21.1(C3:S3)378,42
C21.2(C3⋊S3) = C32⋊D21φ: C3⋊S3/C32C2 ⊆ Aut C21636C21.2(C3:S3)378,43
C21.3(C3⋊S3) = C7×C9⋊S3φ: C3⋊S3/C32C2 ⊆ Aut C21189C21.3(C3:S3)378,40
C21.4(C3⋊S3) = C7×He3⋊C2central extension (φ=1)633C21.4(C3:S3)378,41

׿
×
𝔽