Extensions 1→N→G→Q→1 with N=C2×C10 and Q=D9

Direct product G=N×Q with N=C2×C10 and Q=D9
dρLabelID
D9×C2×C10180D9xC2xC10360,48

Semidirect products G=N:Q with N=C2×C10 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C10)⋊1D9 = C5×C3.S4φ: D9/C3S3 ⊆ Aut C2×C10906(C2xC10):1D9360,40
(C2×C10)⋊2D9 = C22⋊D45φ: D9/C3S3 ⊆ Aut C2×C10906+(C2xC10):2D9360,41
(C2×C10)⋊3D9 = C5×C9⋊D4φ: D9/C9C2 ⊆ Aut C2×C101802(C2xC10):3D9360,24
(C2×C10)⋊4D9 = C457D4φ: D9/C9C2 ⊆ Aut C2×C101802(C2xC10):4D9360,29
(C2×C10)⋊5D9 = C22×D45φ: D9/C9C2 ⊆ Aut C2×C10180(C2xC10):5D9360,49

Non-split extensions G=N.Q with N=C2×C10 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C10).D9 = C2×Dic45φ: D9/C9C2 ⊆ Aut C2×C10360(C2xC10).D9360,28
(C2×C10).2D9 = C10×Dic9central extension (φ=1)360(C2xC10).2D9360,23

׿
×
𝔽