Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C3xD5

Direct product G=NxQ with N=C2xC6 and Q=C3xD5
dρLabelID
D5xC62180D5xC6^2360,157

Semidirect products G=N:Q with N=C2xC6 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
(C2xC6):(C3xD5) = A4xD15φ: C3xD5/C5C6 ⊆ Aut C2xC6606+(C2xC6):(C3xD5)360,144
(C2xC6):2(C3xD5) = C3xD5xA4φ: C3xD5/D5C3 ⊆ Aut C2xC6606(C2xC6):2(C3xD5)360,142
(C2xC6):3(C3xD5) = C32xC5:D4φ: C3xD5/C15C2 ⊆ Aut C2xC6180(C2xC6):3(C3xD5)360,94
(C2xC6):4(C3xD5) = C3xC15:7D4φ: C3xD5/C15C2 ⊆ Aut C2xC6602(C2xC6):4(C3xD5)360,104
(C2xC6):5(C3xD5) = C2xC6xD15φ: C3xD5/C15C2 ⊆ Aut C2xC6120(C2xC6):5(C3xD5)360,159

Non-split extensions G=N.Q with N=C2xC6 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
(C2xC6).(C3xD5) = D5xC3.A4φ: C3xD5/D5C3 ⊆ Aut C2xC6906(C2xC6).(C3xD5)360,42
(C2xC6).2(C3xD5) = C9xC5:D4φ: C3xD5/C15C2 ⊆ Aut C2xC61802(C2xC6).2(C3xD5)360,19
(C2xC6).3(C3xD5) = C6xDic15φ: C3xD5/C15C2 ⊆ Aut C2xC6120(C2xC6).3(C3xD5)360,103
(C2xC6).4(C3xD5) = C18xDic5central extension (φ=1)360(C2xC6).4(C3xD5)360,18
(C2xC6).5(C3xD5) = D5xC2xC18central extension (φ=1)180(C2xC6).5(C3xD5)360,47
(C2xC6).6(C3xD5) = C3xC6xDic5central extension (φ=1)360(C2xC6).6(C3xD5)360,93

׿
x
:
Z
F
o
wr
Q
<