Extensions 1→N→G→Q→1 with N=C3⋊Dic3 and Q=D5

Direct product G=N×Q with N=C3⋊Dic3 and Q=D5
dρLabelID
D5×C3⋊Dic3180D5xC3:Dic3360,65

Semidirect products G=N:Q with N=C3⋊Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
C3⋊Dic31D5 = C327D20φ: D5/C5C2 ⊆ Out C3⋊Dic3180C3:Dic3:1D5360,69
C3⋊Dic32D5 = D30.S3φ: D5/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3:2D5360,84
C3⋊Dic33D5 = C323D20φ: D5/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3:3D5360,87
C3⋊Dic34D5 = C30.D6φ: trivial image180C3:Dic3:4D5360,67

Non-split extensions G=N.Q with N=C3⋊Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
C3⋊Dic3.1D5 = (C3×C15)⋊9C8φ: D5/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3.1D5360,56
C3⋊Dic3.2D5 = C15⋊Dic6φ: D5/C5C2 ⊆ Out C3⋊Dic3360C3:Dic3.2D5360,71
C3⋊Dic3.3D5 = C323Dic10φ: D5/C5C2 ⊆ Out C3⋊Dic31204C3:Dic3.3D5360,88

׿
×
𝔽