Extensions 1→N→G→Q→1 with N=C2×C10 and Q=C3⋊S3

Direct product G=N×Q with N=C2×C10 and Q=C3⋊S3
dρLabelID
C3⋊S3×C2×C10180C3:S3xC2xC10360,160

Semidirect products G=N:Q with N=C2×C10 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C10)⋊1(C3⋊S3) = C5×C3⋊S4φ: C3⋊S3/C3S3 ⊆ Aut C2×C10606(C2xC10):1(C3:S3)360,140
(C2×C10)⋊2(C3⋊S3) = A4⋊D15φ: C3⋊S3/C3S3 ⊆ Aut C2×C10606+(C2xC10):2(C3:S3)360,141
(C2×C10)⋊3(C3⋊S3) = C5×C327D4φ: C3⋊S3/C32C2 ⊆ Aut C2×C10180(C2xC10):3(C3:S3)360,109
(C2×C10)⋊4(C3⋊S3) = C62⋊D5φ: C3⋊S3/C32C2 ⊆ Aut C2×C10180(C2xC10):4(C3:S3)360,114
(C2×C10)⋊5(C3⋊S3) = C22×C3⋊D15φ: C3⋊S3/C32C2 ⊆ Aut C2×C10180(C2xC10):5(C3:S3)360,161

Non-split extensions G=N.Q with N=C2×C10 and Q=C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C10).(C3⋊S3) = C2×C3⋊Dic15φ: C3⋊S3/C32C2 ⊆ Aut C2×C10360(C2xC10).(C3:S3)360,113
(C2×C10).2(C3⋊S3) = C10×C3⋊Dic3central extension (φ=1)360(C2xC10).2(C3:S3)360,108

׿
×
𝔽