Extensions 1→N→G→Q→1 with N=C3×C33 and Q=C4

Direct product G=N×Q with N=C3×C33 and Q=C4
dρLabelID
C3×C132396C3xC132396,16

Semidirect products G=N:Q with N=C3×C33 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3×C33)⋊1C4 = C11×C32⋊C4φ: C4/C1C4 ⊆ Aut C3×C33664(C3xC33):1C4396,17
(C3×C33)⋊2C4 = C32⋊Dic11φ: C4/C1C4 ⊆ Aut C3×C33664(C3xC33):2C4396,18
(C3×C33)⋊3C4 = C3⋊Dic33φ: C4/C2C2 ⊆ Aut C3×C33396(C3xC33):3C4396,15
(C3×C33)⋊4C4 = C3×Dic33φ: C4/C2C2 ⊆ Aut C3×C331322(C3xC33):4C4396,13
(C3×C33)⋊5C4 = C32×Dic11φ: C4/C2C2 ⊆ Aut C3×C33396(C3xC33):5C4396,11
(C3×C33)⋊6C4 = Dic3×C33φ: C4/C2C2 ⊆ Aut C3×C331322(C3xC33):6C4396,12
(C3×C33)⋊7C4 = C11×C3⋊Dic3φ: C4/C2C2 ⊆ Aut C3×C33396(C3xC33):7C4396,14


׿
×
𝔽