Extensions 1→N→G→Q→1 with N=C2×C50 and Q=C4

Direct product G=N×Q with N=C2×C50 and Q=C4
dρLabelID
C22×C100400C2^2xC100400,45

Semidirect products G=N:Q with N=C2×C50 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C50)⋊1C4 = D25.D4φ: C4/C1C4 ⊆ Aut C2×C501004+(C2xC50):1C4400,34
(C2×C50)⋊2C4 = C22×C25⋊C4φ: C4/C1C4 ⊆ Aut C2×C50100(C2xC50):2C4400,53
(C2×C50)⋊3C4 = C22⋊C4×C25φ: C4/C2C2 ⊆ Aut C2×C50200(C2xC50):3C4400,21
(C2×C50)⋊4C4 = C23.D25φ: C4/C2C2 ⊆ Aut C2×C50200(C2xC50):4C4400,19
(C2×C50)⋊5C4 = C22×Dic25φ: C4/C2C2 ⊆ Aut C2×C50400(C2xC50):5C4400,43

Non-split extensions G=N.Q with N=C2×C50 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C50).1C4 = C2×C25⋊C8φ: C4/C1C4 ⊆ Aut C2×C50400(C2xC50).1C4400,32
(C2×C50).2C4 = C25⋊M4(2)φ: C4/C1C4 ⊆ Aut C2×C502004-(C2xC50).2C4400,33
(C2×C50).3C4 = M4(2)×C25φ: C4/C2C2 ⊆ Aut C2×C502002(C2xC50).3C4400,24
(C2×C50).4C4 = C2×C252C8φ: C4/C2C2 ⊆ Aut C2×C50400(C2xC50).4C4400,9
(C2×C50).5C4 = C4.Dic25φ: C4/C2C2 ⊆ Aut C2×C502002(C2xC50).5C4400,10

׿
×
𝔽