Extensions 1→N→G→Q→1 with N=C2×Dic5 and Q=C10

Direct product G=N×Q with N=C2×Dic5 and Q=C10
dρLabelID
Dic5×C2×C1080Dic5xC2xC10400,189

Semidirect products G=N:Q with N=C2×Dic5 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×Dic5)⋊1C10 = C5×D10⋊C4φ: C10/C5C2 ⊆ Out C2×Dic580(C2xDic5):1C10400,86
(C2×Dic5)⋊2C10 = C5×C23.D5φ: C10/C5C2 ⊆ Out C2×Dic540(C2xDic5):2C10400,91
(C2×Dic5)⋊3C10 = C5×D42D5φ: C10/C5C2 ⊆ Out C2×Dic5404(C2xDic5):3C10400,186
(C2×Dic5)⋊4C10 = C10×C5⋊D4φ: C10/C5C2 ⊆ Out C2×Dic540(C2xDic5):4C10400,190
(C2×Dic5)⋊5C10 = D5×C2×C20φ: trivial image80(C2xDic5):5C10400,182

Non-split extensions G=N.Q with N=C2×Dic5 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×Dic5).1C10 = C5×C10.D4φ: C10/C5C2 ⊆ Out C2×Dic580(C2xDic5).1C10400,84
(C2×Dic5).2C10 = C5×C4⋊Dic5φ: C10/C5C2 ⊆ Out C2×Dic580(C2xDic5).2C10400,85
(C2×Dic5).3C10 = C10×Dic10φ: C10/C5C2 ⊆ Out C2×Dic580(C2xDic5).3C10400,181
(C2×Dic5).4C10 = C10×C5⋊C8φ: C10/C5C2 ⊆ Out C2×Dic580(C2xDic5).4C10400,139
(C2×Dic5).5C10 = C5×C22.F5φ: C10/C5C2 ⊆ Out C2×Dic5404(C2xDic5).5C10400,140
(C2×Dic5).6C10 = Dic5×C20φ: trivial image80(C2xDic5).6C10400,83

׿
×
𝔽