Extensions 1→N→G→Q→1 with N=C2×D4 and Q=D13

Direct product G=N×Q with N=C2×D4 and Q=D13
dρLabelID
C2×D4×D13104C2xD4xD13416,216

Semidirect products G=N:Q with N=C2×D4 and Q=D13
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1D13 = C2×D4⋊D13φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4):1D13416,152
(C2×D4)⋊2D13 = D526C22φ: D13/C13C2 ⊆ Out C2×D41044(C2xD4):2D13416,153
(C2×D4)⋊3D13 = C23⋊D26φ: D13/C13C2 ⊆ Out C2×D4104(C2xD4):3D13416,158
(C2×D4)⋊4D13 = C522D4φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4):4D13416,159
(C2×D4)⋊5D13 = Dic13⋊D4φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4):5D13416,160
(C2×D4)⋊6D13 = C52⋊D4φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4):6D13416,161
(C2×D4)⋊7D13 = D46D26φ: D13/C13C2 ⊆ Out C2×D41044(C2xD4):7D13416,218
(C2×D4)⋊8D13 = C2×D42D13φ: trivial image208(C2xD4):8D13416,217

Non-split extensions G=N.Q with N=C2×D4 and Q=D13
extensionφ:Q→Out NdρLabelID
(C2×D4).1D13 = D4⋊Dic13φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4).1D13416,39
(C2×D4).2D13 = C52.D4φ: D13/C13C2 ⊆ Out C2×D41044(C2xD4).2D13416,40
(C2×D4).3D13 = C23⋊Dic13φ: D13/C13C2 ⊆ Out C2×D41044(C2xD4).3D13416,41
(C2×D4).4D13 = C2×D4.D13φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4).4D13416,154
(C2×D4).5D13 = C23.18D26φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4).5D13416,156
(C2×D4).6D13 = C52.17D4φ: D13/C13C2 ⊆ Out C2×D4208(C2xD4).6D13416,157
(C2×D4).7D13 = D4×Dic13φ: trivial image208(C2xD4).7D13416,155

׿
×
𝔽