Extensions 1→N→G→Q→1 with N=C132C16 and Q=C2

Direct product G=N×Q with N=C132C16 and Q=C2
dρLabelID
C2×C132C16416C2xC13:2C16416,18

Semidirect products G=N:Q with N=C132C16 and Q=C2
extensionφ:Q→Out NdρLabelID
C132C161C2 = C13⋊D16φ: C2/C1C2 ⊆ Out C132C162084+C13:2C16:1C2416,33
C132C162C2 = D8.D13φ: C2/C1C2 ⊆ Out C132C162084-C13:2C16:2C2416,34
C132C163C2 = C8.6D26φ: C2/C1C2 ⊆ Out C132C162084+C13:2C16:3C2416,35
C132C164C2 = C208⋊C2φ: C2/C1C2 ⊆ Out C132C162082C13:2C16:4C2416,5
C132C165C2 = C52.4C8φ: C2/C1C2 ⊆ Out C132C162082C13:2C16:5C2416,19
C132C166C2 = C16×D13φ: trivial image2082C13:2C16:6C2416,4

Non-split extensions G=N.Q with N=C132C16 and Q=C2
extensionφ:Q→Out NdρLabelID
C132C16.1C2 = C13⋊Q32φ: C2/C1C2 ⊆ Out C132C164164-C13:2C16.1C2416,36
C132C16.2C2 = C13⋊C32φ: C2/C1C2 ⊆ Out C132C164164C13:2C16.2C2416,3

׿
×
𝔽