Extensions 1→N→G→Q→1 with N=Dic3×C17 and Q=C2

Direct product G=N×Q with N=Dic3×C17 and Q=C2
dρLabelID
Dic3×C34408Dic3xC34408,23

Semidirect products G=N:Q with N=Dic3×C17 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C17)⋊1C2 = Dic3×D17φ: C2/C1C2 ⊆ Out Dic3×C172044-(Dic3xC17):1C2408,7
(Dic3×C17)⋊2C2 = D512C4φ: C2/C1C2 ⊆ Out Dic3×C172044+(Dic3xC17):2C2408,9
(Dic3×C17)⋊3C2 = C3⋊D68φ: C2/C1C2 ⊆ Out Dic3×C172044+(Dic3xC17):3C2408,11
(Dic3×C17)⋊4C2 = C17×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×C172042(Dic3xC17):4C2408,24
(Dic3×C17)⋊5C2 = S3×C68φ: trivial image2042(Dic3xC17):5C2408,21

Non-split extensions G=N.Q with N=Dic3×C17 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C17).1C2 = C51⋊Q8φ: C2/C1C2 ⊆ Out Dic3×C174084-(Dic3xC17).1C2408,13
(Dic3×C17).2C2 = C17×Dic6φ: C2/C1C2 ⊆ Out Dic3×C174082(Dic3xC17).2C2408,20

׿
×
𝔽