Extensions 1→N→G→Q→1 with N=C208 and Q=C2

Direct product G=N×Q with N=C208 and Q=C2
dρLabelID
C2×C208416C2xC208416,59

Semidirect products G=N:Q with N=C208 and Q=C2
extensionφ:Q→Aut NdρLabelID
C2081C2 = D208φ: C2/C1C2 ⊆ Aut C2082082+C208:1C2416,6
C2082C2 = C16⋊D13φ: C2/C1C2 ⊆ Aut C2082082C208:2C2416,7
C2083C2 = C16×D13φ: C2/C1C2 ⊆ Aut C2082082C208:3C2416,4
C2084C2 = C208⋊C2φ: C2/C1C2 ⊆ Aut C2082082C208:4C2416,5
C2085C2 = C13×D16φ: C2/C1C2 ⊆ Aut C2082082C208:5C2416,61
C2086C2 = C13×SD32φ: C2/C1C2 ⊆ Aut C2082082C208:6C2416,62
C2087C2 = C13×M5(2)φ: C2/C1C2 ⊆ Aut C2082082C208:7C2416,60

Non-split extensions G=N.Q with N=C208 and Q=C2
extensionφ:Q→Aut NdρLabelID
C208.1C2 = Dic104φ: C2/C1C2 ⊆ Aut C2084162-C208.1C2416,8
C208.2C2 = C132C32φ: C2/C1C2 ⊆ Aut C2084162C208.2C2416,1
C208.3C2 = C13×Q32φ: C2/C1C2 ⊆ Aut C2084162C208.3C2416,63

׿
×
𝔽