Extensions 1→N→G→Q→1 with N=C3×Dic17 and Q=C2

Direct product G=N×Q with N=C3×Dic17 and Q=C2
dρLabelID
C6×Dic17408C6xDic17408,18

Semidirect products G=N:Q with N=C3×Dic17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic17)⋊1C2 = S3×Dic17φ: C2/C1C2 ⊆ Out C3×Dic172044-(C3xDic17):1C2408,8
(C3×Dic17)⋊2C2 = D512C4φ: C2/C1C2 ⊆ Out C3×Dic172044+(C3xDic17):2C2408,9
(C3×Dic17)⋊3C2 = C17⋊D12φ: C2/C1C2 ⊆ Out C3×Dic172044+(C3xDic17):3C2408,12
(C3×Dic17)⋊4C2 = C3×C17⋊D4φ: C2/C1C2 ⊆ Out C3×Dic172042(C3xDic17):4C2408,19
(C3×Dic17)⋊5C2 = C12×D17φ: trivial image2042(C3xDic17):5C2408,16

Non-split extensions G=N.Q with N=C3×Dic17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic17).1C2 = C51⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic174084-(C3xDic17).1C2408,13
(C3×Dic17).2C2 = C3×Dic34φ: C2/C1C2 ⊆ Out C3×Dic174082(C3xDic17).2C2408,15
(C3×Dic17).3C2 = C513C8φ: C2/C1C2 ⊆ Out C3×Dic174084(C3xDic17).3C2408,6
(C3×Dic17).4C2 = C3×C172C8φ: C2/C1C2 ⊆ Out C3×Dic174084(C3xDic17).4C2408,5

׿
×
𝔽