Extensions 1→N→G→Q→1 with N=C2 and Q=C2×D52

Direct product G=N×Q with N=C2 and Q=C2×D52
dρLabelID
C22×D52208C2^2xD52416,214


Non-split extensions G=N.Q with N=C2 and Q=C2×D52
extensionφ:Q→Aut NdρLabelID
C2.1(C2×D52) = C4×D52central extension (φ=1)208C2.1(C2xD52)416,94
C2.2(C2×D52) = C2×C523C4central extension (φ=1)416C2.2(C2xD52)416,146
C2.3(C2×D52) = C2×D26⋊C4central extension (φ=1)208C2.3(C2xD52)416,148
C2.4(C2×D52) = C522Q8central stem extension (φ=1)416C2.4(C2xD52)416,90
C2.5(C2×D52) = C4⋊D52central stem extension (φ=1)208C2.5(C2xD52)416,95
C2.6(C2×D52) = C4.D52central stem extension (φ=1)208C2.6(C2xD52)416,96
C2.7(C2×D52) = C22⋊D52central stem extension (φ=1)104C2.7(C2xD52)416,103
C2.8(C2×D52) = C22.D52central stem extension (φ=1)208C2.8(C2xD52)416,107
C2.9(C2×D52) = C42D52central stem extension (φ=1)208C2.9(C2xD52)416,116
C2.10(C2×D52) = D262Q8central stem extension (φ=1)208C2.10(C2xD52)416,118
C2.11(C2×D52) = C2×C104⋊C2central stem extension (φ=1)208C2.11(C2xD52)416,123
C2.12(C2×D52) = C2×D104central stem extension (φ=1)208C2.12(C2xD52)416,124
C2.13(C2×D52) = D1047C2central stem extension (φ=1)2082C2.13(C2xD52)416,125
C2.14(C2×D52) = C2×Dic52central stem extension (φ=1)416C2.14(C2xD52)416,126
C2.15(C2×D52) = C8⋊D26central stem extension (φ=1)1044+C2.15(C2xD52)416,129
C2.16(C2×D52) = C8.D26central stem extension (φ=1)2084-C2.16(C2xD52)416,130
C2.17(C2×D52) = C527D4central stem extension (φ=1)208C2.17(C2xD52)416,151

׿
×
𝔽