Extensions 1→N→G→Q→1 with N=D525C2 and Q=C2

Direct product G=N×Q with N=D525C2 and Q=C2
dρLabelID
C2×D525C2208C2xD52:5C2416,215

Semidirect products G=N:Q with N=D525C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D525C21C2 = D1047C2φ: C2/C1C2 ⊆ Out D525C22082D52:5C2:1C2416,125
D525C22C2 = C8⋊D26φ: C2/C1C2 ⊆ Out D525C21044+D52:5C2:2C2416,129
D525C23C2 = D526C22φ: C2/C1C2 ⊆ Out D525C21044D52:5C2:3C2416,153
D525C24C2 = C52.C23φ: C2/C1C2 ⊆ Out D525C22084D52:5C2:4C2416,171
D525C25C2 = D46D26φ: C2/C1C2 ⊆ Out D525C21044D52:5C2:5C2416,218
D525C26C2 = Q8.10D26φ: C2/C1C2 ⊆ Out D525C22084D52:5C2:6C2416,221
D525C27C2 = C4○D4×D13φ: C2/C1C2 ⊆ Out D525C21044D52:5C2:7C2416,222
D525C28C2 = D48D26φ: C2/C1C2 ⊆ Out D525C21044+D52:5C2:8C2416,223
D525C29C2 = D4.10D26φ: C2/C1C2 ⊆ Out D525C22084-D52:5C2:9C2416,224

Non-split extensions G=N.Q with N=D525C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D525C2.1C2 = D524C4φ: C2/C1C2 ⊆ Out D525C21042D52:5C2.1C2416,12
D525C2.2C2 = D527C4φ: C2/C1C2 ⊆ Out D525C21044D52:5C2.2C2416,32
D525C2.3C2 = D52.2C4φ: C2/C1C2 ⊆ Out D525C22084D52:5C2.3C2416,128
D525C2.4C2 = C8.D26φ: C2/C1C2 ⊆ Out D525C22084-D52:5C2.4C2416,130
D525C2.5C2 = Q8.D26φ: C2/C1C2 ⊆ Out D525C22084D52:5C2.5C2416,163
D525C2.6C2 = D52.3C4φ: trivial image2082D52:5C2.6C2416,122

׿
×
𝔽