Extensions 1→N→G→Q→1 with N=C2 and Q=D42D13

Direct product G=N×Q with N=C2 and Q=D42D13
dρLabelID
C2×D42D13208C2xD4:2D13416,217


Non-split extensions G=N.Q with N=C2 and Q=D42D13
extensionφ:Q→Aut NdρLabelID
C2.1(D42D13) = C23.11D26central extension (φ=1)208C2.1(D4:2D13)416,98
C2.2(D42D13) = Dic134D4central extension (φ=1)208C2.2(D4:2D13)416,102
C2.3(D42D13) = Dic133Q8central extension (φ=1)416C2.3(D4:2D13)416,108
C2.4(D42D13) = C4⋊C47D13central extension (φ=1)208C2.4(D4:2D13)416,113
C2.5(D42D13) = D4×Dic13central extension (φ=1)208C2.5(D4:2D13)416,155
C2.6(D42D13) = C22⋊Dic26central stem extension (φ=1)208C2.6(D4:2D13)416,99
C2.7(D42D13) = C23.D26central stem extension (φ=1)208C2.7(D4:2D13)416,100
C2.8(D42D13) = D26.12D4central stem extension (φ=1)208C2.8(D4:2D13)416,104
C2.9(D42D13) = C23.6D26central stem extension (φ=1)208C2.9(D4:2D13)416,106
C2.10(D42D13) = C22.D52central stem extension (φ=1)208C2.10(D4:2D13)416,107
C2.11(D42D13) = Dic13.Q8central stem extension (φ=1)416C2.11(D4:2D13)416,110
C2.12(D42D13) = C4.Dic26central stem extension (φ=1)416C2.12(D4:2D13)416,111
C2.13(D42D13) = D262Q8central stem extension (φ=1)208C2.13(D4:2D13)416,118
C2.14(D42D13) = C4⋊C4⋊D13central stem extension (φ=1)208C2.14(D4:2D13)416,119
C2.15(D42D13) = C23.18D26central stem extension (φ=1)208C2.15(D4:2D13)416,156
C2.16(D42D13) = C52.17D4central stem extension (φ=1)208C2.16(D4:2D13)416,157
C2.17(D42D13) = C522D4central stem extension (φ=1)208C2.17(D4:2D13)416,159
C2.18(D42D13) = Dic13⋊D4central stem extension (φ=1)208C2.18(D4:2D13)416,160

׿
×
𝔽