Extensions 1→N→G→Q→1 with N=Dic26 and Q=C4

Direct product G=N×Q with N=Dic26 and Q=C4
dρLabelID
C4×Dic26416C4xDic26416,89

Semidirect products G=N:Q with N=Dic26 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic261C4 = Dic26⋊C4φ: C4/C1C4 ⊆ Out Dic261048-Dic26:1C4416,83
Dic262C4 = D13.Q16φ: C4/C1C4 ⊆ Out Dic261048-Dic26:2C4416,84
Dic263C4 = Q8×C13⋊C4φ: C4/C1C4 ⊆ Out Dic261048-Dic26:3C4416,208
Dic264C4 = D524C4φ: C4/C2C2 ⊆ Out Dic261042Dic26:4C4416,12
Dic265C4 = C52.44D4φ: C4/C2C2 ⊆ Out Dic26416Dic26:5C4416,23
Dic266C4 = C26.Q16φ: C4/C2C2 ⊆ Out Dic26416Dic26:6C4416,17
Dic267C4 = D527C4φ: C4/C2C2 ⊆ Out Dic261044Dic26:7C4416,32
Dic268C4 = Dic133Q8φ: C4/C2C2 ⊆ Out Dic26416Dic26:8C4416,108

Non-split extensions G=N.Q with N=Dic26 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic26.C4 = Dic26.C4φ: C4/C1C4 ⊆ Out Dic262088-Dic26.C4416,205
Dic26.2C4 = D52.2C4φ: C4/C2C2 ⊆ Out Dic262084Dic26.2C4416,128
Dic26.3C4 = D52.3C4φ: trivial image2082Dic26.3C4416,122

׿
×
𝔽