extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1D34 = Dic3×D17 | φ: D34/D17 → C2 ⊆ Aut C6 | 204 | 4- | C6.1D34 | 408,7 |
C6.2D34 = S3×Dic17 | φ: D34/D17 → C2 ⊆ Aut C6 | 204 | 4- | C6.2D34 | 408,8 |
C6.3D34 = D51⋊2C4 | φ: D34/D17 → C2 ⊆ Aut C6 | 204 | 4+ | C6.3D34 | 408,9 |
C6.4D34 = C51⋊D4 | φ: D34/D17 → C2 ⊆ Aut C6 | 204 | 4- | C6.4D34 | 408,10 |
C6.5D34 = C3⋊D68 | φ: D34/D17 → C2 ⊆ Aut C6 | 204 | 4+ | C6.5D34 | 408,11 |
C6.6D34 = C17⋊D12 | φ: D34/D17 → C2 ⊆ Aut C6 | 204 | 4+ | C6.6D34 | 408,12 |
C6.7D34 = C51⋊Q8 | φ: D34/D17 → C2 ⊆ Aut C6 | 408 | 4- | C6.7D34 | 408,13 |
C6.8D34 = Dic102 | φ: D34/C34 → C2 ⊆ Aut C6 | 408 | 2- | C6.8D34 | 408,25 |
C6.9D34 = C4×D51 | φ: D34/C34 → C2 ⊆ Aut C6 | 204 | 2 | C6.9D34 | 408,26 |
C6.10D34 = D204 | φ: D34/C34 → C2 ⊆ Aut C6 | 204 | 2+ | C6.10D34 | 408,27 |
C6.11D34 = C2×Dic51 | φ: D34/C34 → C2 ⊆ Aut C6 | 408 | | C6.11D34 | 408,28 |
C6.12D34 = C51⋊7D4 | φ: D34/C34 → C2 ⊆ Aut C6 | 204 | 2 | C6.12D34 | 408,29 |
C6.13D34 = C3×Dic34 | central extension (φ=1) | 408 | 2 | C6.13D34 | 408,15 |
C6.14D34 = C12×D17 | central extension (φ=1) | 204 | 2 | C6.14D34 | 408,16 |
C6.15D34 = C3×D68 | central extension (φ=1) | 204 | 2 | C6.15D34 | 408,17 |
C6.16D34 = C6×Dic17 | central extension (φ=1) | 408 | | C6.16D34 | 408,18 |
C6.17D34 = C3×C17⋊D4 | central extension (φ=1) | 204 | 2 | C6.17D34 | 408,19 |