Extensions 1→N→G→Q→1 with N=C6 and Q=D34

Direct product G=N×Q with N=C6 and Q=D34
dρLabelID
C2×C6×D17204C2xC6xD17408,43

Semidirect products G=N:Q with N=C6 and Q=D34
extensionφ:Q→Aut NdρLabelID
C61D34 = C2×S3×D17φ: D34/D17C2 ⊆ Aut C61024+C6:1D34408,41
C62D34 = C22×D51φ: D34/C34C2 ⊆ Aut C6204C6:2D34408,45

Non-split extensions G=N.Q with N=C6 and Q=D34
extensionφ:Q→Aut NdρLabelID
C6.1D34 = Dic3×D17φ: D34/D17C2 ⊆ Aut C62044-C6.1D34408,7
C6.2D34 = S3×Dic17φ: D34/D17C2 ⊆ Aut C62044-C6.2D34408,8
C6.3D34 = D512C4φ: D34/D17C2 ⊆ Aut C62044+C6.3D34408,9
C6.4D34 = C51⋊D4φ: D34/D17C2 ⊆ Aut C62044-C6.4D34408,10
C6.5D34 = C3⋊D68φ: D34/D17C2 ⊆ Aut C62044+C6.5D34408,11
C6.6D34 = C17⋊D12φ: D34/D17C2 ⊆ Aut C62044+C6.6D34408,12
C6.7D34 = C51⋊Q8φ: D34/D17C2 ⊆ Aut C64084-C6.7D34408,13
C6.8D34 = Dic102φ: D34/C34C2 ⊆ Aut C64082-C6.8D34408,25
C6.9D34 = C4×D51φ: D34/C34C2 ⊆ Aut C62042C6.9D34408,26
C6.10D34 = D204φ: D34/C34C2 ⊆ Aut C62042+C6.10D34408,27
C6.11D34 = C2×Dic51φ: D34/C34C2 ⊆ Aut C6408C6.11D34408,28
C6.12D34 = C517D4φ: D34/C34C2 ⊆ Aut C62042C6.12D34408,29
C6.13D34 = C3×Dic34central extension (φ=1)4082C6.13D34408,15
C6.14D34 = C12×D17central extension (φ=1)2042C6.14D34408,16
C6.15D34 = C3×D68central extension (φ=1)2042C6.15D34408,17
C6.16D34 = C6×Dic17central extension (φ=1)408C6.16D34408,18
C6.17D34 = C3×C17⋊D4central extension (φ=1)2042C6.17D34408,19

׿
×
𝔽