Extensions 1→N→G→Q→1 with N=C4 and Q=D52

Direct product G=N×Q with N=C4 and Q=D52
dρLabelID
C4×D52208C4xD52416,94

Semidirect products G=N:Q with N=C4 and Q=D52
extensionφ:Q→Aut NdρLabelID
C41D52 = C4⋊D52φ: D52/C52C2 ⊆ Aut C4208C4:1D52416,95
C42D52 = C42D52φ: D52/D26C2 ⊆ Aut C4208C4:2D52416,116

Non-split extensions G=N.Q with N=C4 and Q=D52
extensionφ:Q→Aut NdρLabelID
C4.1D52 = D208φ: D52/C52C2 ⊆ Aut C42082+C4.1D52416,6
C4.2D52 = C16⋊D13φ: D52/C52C2 ⊆ Aut C42082C4.2D52416,7
C4.3D52 = Dic104φ: D52/C52C2 ⊆ Aut C44162-C4.3D52416,8
C4.4D52 = C522Q8φ: D52/C52C2 ⊆ Aut C4416C4.4D52416,90
C4.5D52 = C4.D52φ: D52/C52C2 ⊆ Aut C4208C4.5D52416,96
C4.6D52 = C2×C104⋊C2φ: D52/C52C2 ⊆ Aut C4208C4.6D52416,123
C4.7D52 = C2×D104φ: D52/C52C2 ⊆ Aut C4208C4.7D52416,124
C4.8D52 = C2×Dic52φ: D52/C52C2 ⊆ Aut C4416C4.8D52416,126
C4.9D52 = D526C4φ: D52/D26C2 ⊆ Aut C4208C4.9D52416,16
C4.10D52 = C26.Q16φ: D52/D26C2 ⊆ Aut C4416C4.10D52416,17
C4.11D52 = C52.46D4φ: D52/D26C2 ⊆ Aut C41044+C4.11D52416,30
C4.12D52 = C4.12D52φ: D52/D26C2 ⊆ Aut C42084-C4.12D52416,31
C4.13D52 = D262Q8φ: D52/D26C2 ⊆ Aut C4208C4.13D52416,118
C4.14D52 = C8⋊D26φ: D52/D26C2 ⊆ Aut C41044+C4.14D52416,129
C4.15D52 = C8.D26φ: D52/D26C2 ⊆ Aut C42084-C4.15D52416,130
C4.16D52 = C523C8central extension (φ=1)416C4.16D52416,11
C4.17D52 = D524C4central extension (φ=1)1042C4.17D52416,12
C4.18D52 = C104.6C4central extension (φ=1)2082C4.18D52416,26
C4.19D52 = D261C8central extension (φ=1)208C4.19D52416,27
C4.20D52 = D1047C2central extension (φ=1)2082C4.20D52416,125

׿
×
𝔽