Extensions 1→N→G→Q→1 with N=C26 and Q=D8

Direct product G=N×Q with N=C26 and Q=D8
dρLabelID
D8×C26208D8xC26416,193

Semidirect products G=N:Q with N=C26 and Q=D8
extensionφ:Q→Aut NdρLabelID
C261D8 = C2×D104φ: D8/C8C2 ⊆ Aut C26208C26:1D8416,124
C262D8 = C2×D4⋊D13φ: D8/D4C2 ⊆ Aut C26208C26:2D8416,152

Non-split extensions G=N.Q with N=C26 and Q=D8
extensionφ:Q→Aut NdρLabelID
C26.1D8 = D208φ: D8/C8C2 ⊆ Aut C262082+C26.1D8416,6
C26.2D8 = C16⋊D13φ: D8/C8C2 ⊆ Aut C262082C26.2D8416,7
C26.3D8 = Dic104φ: D8/C8C2 ⊆ Aut C264162-C26.3D8416,8
C26.4D8 = C1045C4φ: D8/C8C2 ⊆ Aut C26416C26.4D8416,25
C26.5D8 = D525C4φ: D8/C8C2 ⊆ Aut C26208C26.5D8416,28
C26.6D8 = C26.D8φ: D8/D4C2 ⊆ Aut C26416C26.6D8416,14
C26.7D8 = D526C4φ: D8/D4C2 ⊆ Aut C26208C26.7D8416,16
C26.8D8 = C13⋊D16φ: D8/D4C2 ⊆ Aut C262084+C26.8D8416,33
C26.9D8 = D8.D13φ: D8/D4C2 ⊆ Aut C262084-C26.9D8416,34
C26.10D8 = C8.6D26φ: D8/D4C2 ⊆ Aut C262084+C26.10D8416,35
C26.11D8 = C13⋊Q32φ: D8/D4C2 ⊆ Aut C264164-C26.11D8416,36
C26.12D8 = D4⋊Dic13φ: D8/D4C2 ⊆ Aut C26208C26.12D8416,39
C26.13D8 = C13×D4⋊C4central extension (φ=1)208C26.13D8416,52
C26.14D8 = C13×C2.D8central extension (φ=1)416C26.14D8416,57
C26.15D8 = C13×D16central extension (φ=1)2082C26.15D8416,61
C26.16D8 = C13×SD32central extension (φ=1)2082C26.16D8416,62
C26.17D8 = C13×Q32central extension (φ=1)4162C26.17D8416,63

׿
×
𝔽