Extensions 1→N→G→Q→1 with N=C2xC108 and Q=C2

Direct product G=NxQ with N=C2xC108 and Q=C2
dρLabelID
C22xC108432C2^2xC108432,53

Semidirect products G=N:Q with N=C2xC108 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC108):1C2 = D54:C4φ: C2/C1C2 ⊆ Aut C2xC108216(C2xC108):1C2432,14
(C2xC108):2C2 = C22:C4xC27φ: C2/C1C2 ⊆ Aut C2xC108216(C2xC108):2C2432,21
(C2xC108):3C2 = C2xD108φ: C2/C1C2 ⊆ Aut C2xC108216(C2xC108):3C2432,45
(C2xC108):4C2 = D108:5C2φ: C2/C1C2 ⊆ Aut C2xC1082162(C2xC108):4C2432,46
(C2xC108):5C2 = C2xC4xD27φ: C2/C1C2 ⊆ Aut C2xC108216(C2xC108):5C2432,44
(C2xC108):6C2 = D4xC54φ: C2/C1C2 ⊆ Aut C2xC108216(C2xC108):6C2432,54
(C2xC108):7C2 = C4oD4xC27φ: C2/C1C2 ⊆ Aut C2xC1082162(C2xC108):7C2432,56

Non-split extensions G=N.Q with N=C2xC108 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC108).1C2 = Dic27:C4φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).1C2432,12
(C2xC108).2C2 = C4:C4xC27φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).2C2432,22
(C2xC108).3C2 = C4:Dic27φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).3C2432,13
(C2xC108).4C2 = C2xDic54φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).4C2432,43
(C2xC108).5C2 = C4.Dic27φ: C2/C1C2 ⊆ Aut C2xC1082162(C2xC108).5C2432,10
(C2xC108).6C2 = C2xC27:C8φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).6C2432,9
(C2xC108).7C2 = C4xDic27φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).7C2432,11
(C2xC108).8C2 = M4(2)xC27φ: C2/C1C2 ⊆ Aut C2xC1082162(C2xC108).8C2432,24
(C2xC108).9C2 = Q8xC54φ: C2/C1C2 ⊆ Aut C2xC108432(C2xC108).9C2432,55

׿
x
:
Z
F
o
wr
Q
<