Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C3xS3

Direct product G=NxQ with N=C2xDic3 and Q=C3xS3
dρLabelID
S3xC6xDic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=C2xDic3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C2xDic3):1(C3xS3) = C3xD6:Dic3φ: C3xS3/C32C2 ⊆ Out C2xDic348(C2xDic3):1(C3xS3)432,426
(C2xDic3):2(C3xS3) = C3xC6.D12φ: C3xS3/C32C2 ⊆ Out C2xDic348(C2xDic3):2(C3xS3)432,427
(C2xDic3):3(C3xS3) = C3xD6.3D6φ: C3xS3/C32C2 ⊆ Out C2xDic3244(C2xDic3):3(C3xS3)432,652
(C2xDic3):4(C3xS3) = C6xC3:D12φ: C3xS3/C32C2 ⊆ Out C2xDic348(C2xDic3):4(C3xS3)432,656
(C2xDic3):5(C3xS3) = C6xC6.D6φ: trivial image48(C2xDic3):5(C3xS3)432,654

Non-split extensions G=N.Q with N=C2xDic3 and Q=C3xS3
extensionφ:Q→Out NdρLabelID
(C2xDic3).1(C3xS3) = C3xDic3:Dic3φ: C3xS3/C32C2 ⊆ Out C2xDic348(C2xDic3).1(C3xS3)432,428
(C2xDic3).2(C3xS3) = C3xC62.C22φ: C3xS3/C32C2 ⊆ Out C2xDic348(C2xDic3).2(C3xS3)432,429
(C2xDic3).3(C3xS3) = C6xC32:2Q8φ: C3xS3/C32C2 ⊆ Out C2xDic348(C2xDic3).3(C3xS3)432,657
(C2xDic3).4(C3xS3) = C3xDic32φ: trivial image48(C2xDic3).4(C3xS3)432,425

׿
x
:
Z
F
o
wr
Q
<