Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=D12

Direct product G=N×Q with N=C3⋊S3 and Q=D12
dρLabelID
C3⋊S3×D1272C3:S3xD12432,672

Semidirect products G=N:Q with N=C3⋊S3 and Q=D12
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊D12 = C3⋊S3⋊D12φ: D12/C4S3 ⊆ Out C3⋊S33612+C3:S3:D12432,301
C3⋊S32D12 = C2×C322D12φ: D12/C6C22 ⊆ Out C3⋊S3248+C3:S3:2D12432,756
C3⋊S33D12 = C123S32φ: D12/C12C2 ⊆ Out C3⋊S3484C3:S3:3D12432,691
C3⋊S34D12 = C3⋊S34D12φ: D12/D6C2 ⊆ Out C3⋊S3248+C3:S3:4D12432,602

Non-split extensions G=N.Q with N=C3⋊S3 and Q=D12
extensionφ:Q→Out NdρLabelID
C3⋊S3.D12 = F9⋊S3φ: D12/C3D4 ⊆ Out C3⋊S32416+C3:S3.D12432,740
C3⋊S3.2D12 = C3⋊S3.2D12φ: D12/C6C22 ⊆ Out C3⋊S3244C3:S3.2D12432,579
C3⋊S3.3D12 = C6.2PSU3(𝔽2)φ: D12/C6C22 ⊆ Out C3⋊S3488C3:S3.3D12432,593
C3⋊S3.4D12 = C339(C4⋊C4)φ: D12/C12C2 ⊆ Out C3⋊S3484C3:S3.4D12432,638
C3⋊S3.5D12 = D6⋊(C32⋊C4)φ: D12/D6C2 ⊆ Out C3⋊S3248+C3:S3.5D12432,568

׿
×
𝔽