Extensions 1→N→G→Q→1 with N=C3×C12 and Q=A4

Direct product G=N×Q with N=C3×C12 and Q=A4
dρLabelID
A4×C3×C12108A4xC3xC12432,697

Semidirect products G=N:Q with N=C3×C12 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C3×C12)⋊A4 = C4×C32⋊A4φ: A4/C22C3 ⊆ Aut C3×C12363(C3xC12):A4432,333

Non-split extensions G=N.Q with N=C3×C12 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C3×C12).1A4 = C4×C32.A4φ: A4/C22C3 ⊆ Aut C3×C12363(C3xC12).1A4432,332
(C3×C12).2A4 = Q8⋊C94C6φ: A4/C22C3 ⊆ Aut C3×C12726(C3xC12).2A4432,338
(C3×C12).3A4 = C4○D4⋊He3φ: A4/C22C3 ⊆ Aut C3×C12726(C3xC12).3A4432,339
(C3×C12).4A4 = C12×C3.A4central extension (φ=1)108(C3xC12).4A4432,331
(C3×C12).5A4 = C3×Q8.C18central extension (φ=1)216(C3xC12).5A4432,337
(C3×C12).6A4 = C32×C4.A4central extension (φ=1)144(C3xC12).6A4432,699

׿
×
𝔽