Copied to
clipboard

G = Q8⋊C94C6order 432 = 24·33

3rd semidirect product of Q8⋊C9 and C6 acting via C6/C2=C3

non-abelian, soluble

Aliases: Q8⋊C94C6, C12.9(C3×A4), C6.25(C6×A4), (C3×C12).2A4, Q8.C182C3, C4.(C32.A4), C32.(C4.A4), C4○D423- 1+2, (Q8×C32).13C6, Q8⋊3- 1+22C2, Q8.2(C2×3- 1+2), (C3×C6).8(C2×A4), C3.4(C3×C4.A4), (C3×Q8).10(C3×C6), C2.3(C2×C32.A4), (C3×C4○D4).4C32, (C32×C4○D4).2C3, SmallGroup(432,338)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8 — Q8⋊C94C6
C1C2Q8C3×Q8Q8×C32Q8⋊3- 1+2 — Q8⋊C94C6
Q8C3×Q8 — Q8⋊C94C6
C1C12C3×C12

Generators and relations for Q8⋊C94C6
 G = < a,b,c,d | a4=c9=d6=1, b2=a2, bab-1=dad-1=a-1, cac-1=b, cbc-1=ab, bd=db, dcd-1=a-1c7 >

Subgroups: 194 in 70 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, D4, Q8, C9, C32, C12, C12, C2×C6, C4○D4, C18, C3×C6, C3×C6, C2×C12, C3×D4, C3×Q8, C3×Q8, 3- 1+2, C36, C3×C12, C3×C12, C62, C3×C4○D4, C3×C4○D4, C2×3- 1+2, Q8⋊C9, C6×C12, D4×C32, Q8×C32, C4×3- 1+2, Q8.C18, C32×C4○D4, Q8⋊3- 1+2, Q8⋊C94C6
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, C2×A4, 3- 1+2, C3×A4, C4.A4, C2×3- 1+2, C6×A4, C32.A4, C3×C4.A4, C2×C32.A4, Q8⋊C94C6

Smallest permutation representation of Q8⋊C94C6
On 72 points
Generators in S72
(1 26 46 12)(2 32 47 44)(3 55 48 66)(4 20 49 15)(5 35 50 38)(6 58 51 69)(7 23 52 18)(8 29 53 41)(9 61 54 72)(10 71 24 60)(11 30 25 42)(13 65 27 63)(14 33 19 45)(16 68 21 57)(17 36 22 39)(28 70 40 59)(31 64 43 62)(34 67 37 56)
(1 31 46 43)(2 63 47 65)(3 19 48 14)(4 34 49 37)(5 57 50 68)(6 22 51 17)(7 28 52 40)(8 60 53 71)(9 25 54 11)(10 29 24 41)(12 64 26 62)(13 32 27 44)(15 67 20 56)(16 35 21 38)(18 70 23 59)(30 72 42 61)(33 66 45 55)(36 69 39 58)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 62)(2 38 8 44 5 41)(3 54 6 48 9 51)(4 56)(7 59)(10 63 16 60 13 57)(11 22 14 25 17 19)(12 31)(15 34)(18 28)(20 37)(21 71 27 68 24 65)(23 40)(26 43)(29 47 35 53 32 50)(30 36 33)(39 45 42)(46 64)(49 67)(52 70)(55 61 58)(66 72 69)

G:=sub<Sym(72)| (1,26,46,12)(2,32,47,44)(3,55,48,66)(4,20,49,15)(5,35,50,38)(6,58,51,69)(7,23,52,18)(8,29,53,41)(9,61,54,72)(10,71,24,60)(11,30,25,42)(13,65,27,63)(14,33,19,45)(16,68,21,57)(17,36,22,39)(28,70,40,59)(31,64,43,62)(34,67,37,56), (1,31,46,43)(2,63,47,65)(3,19,48,14)(4,34,49,37)(5,57,50,68)(6,22,51,17)(7,28,52,40)(8,60,53,71)(9,25,54,11)(10,29,24,41)(12,64,26,62)(13,32,27,44)(15,67,20,56)(16,35,21,38)(18,70,23,59)(30,72,42,61)(33,66,45,55)(36,69,39,58), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,62)(2,38,8,44,5,41)(3,54,6,48,9,51)(4,56)(7,59)(10,63,16,60,13,57)(11,22,14,25,17,19)(12,31)(15,34)(18,28)(20,37)(21,71,27,68,24,65)(23,40)(26,43)(29,47,35,53,32,50)(30,36,33)(39,45,42)(46,64)(49,67)(52,70)(55,61,58)(66,72,69)>;

G:=Group( (1,26,46,12)(2,32,47,44)(3,55,48,66)(4,20,49,15)(5,35,50,38)(6,58,51,69)(7,23,52,18)(8,29,53,41)(9,61,54,72)(10,71,24,60)(11,30,25,42)(13,65,27,63)(14,33,19,45)(16,68,21,57)(17,36,22,39)(28,70,40,59)(31,64,43,62)(34,67,37,56), (1,31,46,43)(2,63,47,65)(3,19,48,14)(4,34,49,37)(5,57,50,68)(6,22,51,17)(7,28,52,40)(8,60,53,71)(9,25,54,11)(10,29,24,41)(12,64,26,62)(13,32,27,44)(15,67,20,56)(16,35,21,38)(18,70,23,59)(30,72,42,61)(33,66,45,55)(36,69,39,58), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,62)(2,38,8,44,5,41)(3,54,6,48,9,51)(4,56)(7,59)(10,63,16,60,13,57)(11,22,14,25,17,19)(12,31)(15,34)(18,28)(20,37)(21,71,27,68,24,65)(23,40)(26,43)(29,47,35,53,32,50)(30,36,33)(39,45,42)(46,64)(49,67)(52,70)(55,61,58)(66,72,69) );

G=PermutationGroup([[(1,26,46,12),(2,32,47,44),(3,55,48,66),(4,20,49,15),(5,35,50,38),(6,58,51,69),(7,23,52,18),(8,29,53,41),(9,61,54,72),(10,71,24,60),(11,30,25,42),(13,65,27,63),(14,33,19,45),(16,68,21,57),(17,36,22,39),(28,70,40,59),(31,64,43,62),(34,67,37,56)], [(1,31,46,43),(2,63,47,65),(3,19,48,14),(4,34,49,37),(5,57,50,68),(6,22,51,17),(7,28,52,40),(8,60,53,71),(9,25,54,11),(10,29,24,41),(12,64,26,62),(13,32,27,44),(15,67,20,56),(16,35,21,38),(18,70,23,59),(30,72,42,61),(33,66,45,55),(36,69,39,58)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,62),(2,38,8,44,5,41),(3,54,6,48,9,51),(4,56),(7,59),(10,63,16,60,13,57),(11,22,14,25,17,19),(12,31),(15,34),(18,28),(20,37),(21,71,27,68,24,65),(23,40),(26,43),(29,47,35,53,32,50),(30,36,33),(39,45,42),(46,64),(49,67),(52,70),(55,61,58),(66,72,69)]])

62 conjugacy classes

class 1 2A2B3A3B3C3D4A4B4C6A6B6C6D6E···6L9A···9F12A12B12C12D12E12F12G12H12I···12P18A···18F36A···36L
order122333344466666···69···9121212121212121212···1218···1836···36
size116113311611336···612···12111133336···612···1212···12

62 irreducible representations

dim11111122333333336
type++++
imageC1C2C3C3C6C6C4.A4C3×C4.A4A4C2×A43- 1+2C3×A4C2×3- 1+2C6×A4C32.A4C2×C32.A4Q8⋊C94C6
kernelQ8⋊C94C6Q8⋊3- 1+2Q8.C18C32×C4○D4Q8⋊C9Q8×C32C32C3C3×C12C3×C6C4○D4C12Q8C6C4C2C1
# reps116262612112222664

Matrix representation of Q8⋊C94C6 in GL5(𝔽37)

60000
631000
003600
000360
00001
,
362000
361000
00100
000360
000036
,
315000
165000
00010
00001
001000
,
149000
1423000
003600
000260
000010

G:=sub<GL(5,GF(37))| [6,6,0,0,0,0,31,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,1],[36,36,0,0,0,2,1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36],[31,16,0,0,0,5,5,0,0,0,0,0,0,0,10,0,0,1,0,0,0,0,0,1,0],[14,14,0,0,0,9,23,0,0,0,0,0,36,0,0,0,0,0,26,0,0,0,0,0,10] >;

Q8⋊C94C6 in GAP, Magma, Sage, TeX

Q_8\rtimes C_9\rtimes_4C_6
% in TeX

G:=Group("Q8:C9:4C6");
// GroupNames label

G:=SmallGroup(432,338);
// by ID

G=gap.SmallGroup(432,338);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,134,261,1901,172,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^9=d^6=1,b^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,c*a*c^-1=b,c*b*c^-1=a*b,b*d=d*b,d*c*d^-1=a^-1*c^7>;
// generators/relations

׿
×
𝔽