Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3×Dic3

Direct product G=N×Q with N=C2×C6 and Q=C3×Dic3
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C2×C6 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C3×Dic3) = C32×A4⋊C4φ: C3×Dic3/C6S3 ⊆ Aut C2×C6108(C2xC6):1(C3xDic3)432,615
(C2×C6)⋊2(C3×Dic3) = C3×C6.7S4φ: C3×Dic3/C6S3 ⊆ Aut C2×C6366(C2xC6):2(C3xDic3)432,618
(C2×C6)⋊3(C3×Dic3) = A4×C3⋊Dic3φ: C3×Dic3/C6C6 ⊆ Aut C2×C6108(C2xC6):3(C3xDic3)432,627
(C2×C6)⋊4(C3×Dic3) = C3×Dic3×A4φ: C3×Dic3/Dic3C3 ⊆ Aut C2×C6366(C2xC6):4(C3xDic3)432,624
(C2×C6)⋊5(C3×Dic3) = C32×C6.D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6):5(C3xDic3)432,479
(C2×C6)⋊6(C3×Dic3) = C3×C625C4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6):6(C3xDic3)432,495
(C2×C6)⋊7(C3×Dic3) = C2×C6×C3⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6):7(C3xDic3)432,718

Non-split extensions G=N.Q with N=C2×C6 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6).1(C3×Dic3) = C9×A4⋊C4φ: C3×Dic3/C6S3 ⊆ Aut C2×C61083(C2xC6).1(C3xDic3)432,242
(C2×C6).2(C3×Dic3) = C62.Dic3φ: C3×Dic3/C6S3 ⊆ Aut C2×C6366-(C2xC6).2(C3xDic3)432,249
(C2×C6).3(C3×Dic3) = C3×C6.S4φ: C3×Dic3/C6S3 ⊆ Aut C2×C6366(C2xC6).3(C3xDic3)432,250
(C2×C6).4(C3×Dic3) = C625Dic3φ: C3×Dic3/C6S3 ⊆ Aut C2×C6366-(C2xC6).4(C3xDic3)432,251
(C2×C6).5(C3×Dic3) = Dic9⋊A4φ: C3×Dic3/C6C6 ⊆ Aut C2×C61086-(C2xC6).5(C3xDic3)432,265
(C2×C6).6(C3×Dic3) = A4×Dic9φ: C3×Dic3/C6C6 ⊆ Aut C2×C61086-(C2xC6).6(C3xDic3)432,266
(C2×C6).7(C3×Dic3) = C624C12φ: C3×Dic3/C6C6 ⊆ Aut C2×C6366-(C2xC6).7(C3xDic3)432,272
(C2×C6).8(C3×Dic3) = Dic3×C3.A4φ: C3×Dic3/Dic3C3 ⊆ Aut C2×C6366(C2xC6).8(C3xDic3)432,271
(C2×C6).9(C3×Dic3) = C9×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6722(C2xC6).9(C3xDic3)432,127
(C2×C6).10(C3×Dic3) = C9×C6.D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).10(C3xDic3)432,165
(C2×C6).11(C3×Dic3) = C32×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).11(C3xDic3)432,470
(C2×C6).12(C3×Dic3) = C6×C9⋊C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).12(C3xDic3)432,124
(C2×C6).13(C3×Dic3) = C3×C4.Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6722(C2xC6).13(C3xDic3)432,125
(C2×C6).14(C3×Dic3) = C2×He33C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).14(C3xDic3)432,136
(C2×C6).15(C3×Dic3) = He37M4(2)φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6726(C2xC6).15(C3xDic3)432,137
(C2×C6).16(C3×Dic3) = C2×C9⋊C24φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).16(C3xDic3)432,142
(C2×C6).17(C3×Dic3) = C36.C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6726(C2xC6).17(C3xDic3)432,143
(C2×C6).18(C3×Dic3) = C3×C18.D4φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).18(C3xDic3)432,164
(C2×C6).19(C3×Dic3) = C623C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).19(C3xDic3)432,166
(C2×C6).20(C3×Dic3) = C62.27D6φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).20(C3xDic3)432,167
(C2×C6).21(C3×Dic3) = C2×C6×Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).21(C3xDic3)432,372
(C2×C6).22(C3×Dic3) = C22×C32⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).22(C3xDic3)432,376
(C2×C6).23(C3×Dic3) = C22×C9⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).23(C3xDic3)432,378
(C2×C6).24(C3×Dic3) = C6×C324C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C6144(C2xC6).24(C3xDic3)432,485
(C2×C6).25(C3×Dic3) = C3×C12.58D6φ: C3×Dic3/C3×C6C2 ⊆ Aut C2×C672(C2xC6).25(C3xDic3)432,486
(C2×C6).26(C3×Dic3) = C18×C3⋊C8central extension (φ=1)144(C2xC6).26(C3xDic3)432,126
(C2×C6).27(C3×Dic3) = Dic3×C2×C18central extension (φ=1)144(C2xC6).27(C3xDic3)432,373
(C2×C6).28(C3×Dic3) = C3×C6×C3⋊C8central extension (φ=1)144(C2xC6).28(C3xDic3)432,469

׿
×
𝔽