extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C3×Dic3) = C9×A4⋊C4 | φ: C3×Dic3/C6 → S3 ⊆ Aut C2×C6 | 108 | 3 | (C2xC6).1(C3xDic3) | 432,242 |
(C2×C6).2(C3×Dic3) = C62.Dic3 | φ: C3×Dic3/C6 → S3 ⊆ Aut C2×C6 | 36 | 6- | (C2xC6).2(C3xDic3) | 432,249 |
(C2×C6).3(C3×Dic3) = C3×C6.S4 | φ: C3×Dic3/C6 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).3(C3xDic3) | 432,250 |
(C2×C6).4(C3×Dic3) = C62⋊5Dic3 | φ: C3×Dic3/C6 → S3 ⊆ Aut C2×C6 | 36 | 6- | (C2xC6).4(C3xDic3) | 432,251 |
(C2×C6).5(C3×Dic3) = Dic9⋊A4 | φ: C3×Dic3/C6 → C6 ⊆ Aut C2×C6 | 108 | 6- | (C2xC6).5(C3xDic3) | 432,265 |
(C2×C6).6(C3×Dic3) = A4×Dic9 | φ: C3×Dic3/C6 → C6 ⊆ Aut C2×C6 | 108 | 6- | (C2xC6).6(C3xDic3) | 432,266 |
(C2×C6).7(C3×Dic3) = C62⋊4C12 | φ: C3×Dic3/C6 → C6 ⊆ Aut C2×C6 | 36 | 6- | (C2xC6).7(C3xDic3) | 432,272 |
(C2×C6).8(C3×Dic3) = Dic3×C3.A4 | φ: C3×Dic3/Dic3 → C3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).8(C3xDic3) | 432,271 |
(C2×C6).9(C3×Dic3) = C9×C4.Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).9(C3xDic3) | 432,127 |
(C2×C6).10(C3×Dic3) = C9×C6.D4 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).10(C3xDic3) | 432,165 |
(C2×C6).11(C3×Dic3) = C32×C4.Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).11(C3xDic3) | 432,470 |
(C2×C6).12(C3×Dic3) = C6×C9⋊C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).12(C3xDic3) | 432,124 |
(C2×C6).13(C3×Dic3) = C3×C4.Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).13(C3xDic3) | 432,125 |
(C2×C6).14(C3×Dic3) = C2×He3⋊3C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).14(C3xDic3) | 432,136 |
(C2×C6).15(C3×Dic3) = He3⋊7M4(2) | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).15(C3xDic3) | 432,137 |
(C2×C6).16(C3×Dic3) = C2×C9⋊C24 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).16(C3xDic3) | 432,142 |
(C2×C6).17(C3×Dic3) = C36.C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).17(C3xDic3) | 432,143 |
(C2×C6).18(C3×Dic3) = C3×C18.D4 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).18(C3xDic3) | 432,164 |
(C2×C6).19(C3×Dic3) = C62⋊3C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).19(C3xDic3) | 432,166 |
(C2×C6).20(C3×Dic3) = C62.27D6 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).20(C3xDic3) | 432,167 |
(C2×C6).21(C3×Dic3) = C2×C6×Dic9 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).21(C3xDic3) | 432,372 |
(C2×C6).22(C3×Dic3) = C22×C32⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).22(C3xDic3) | 432,376 |
(C2×C6).23(C3×Dic3) = C22×C9⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).23(C3xDic3) | 432,378 |
(C2×C6).24(C3×Dic3) = C6×C32⋊4C8 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).24(C3xDic3) | 432,485 |
(C2×C6).25(C3×Dic3) = C3×C12.58D6 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).25(C3xDic3) | 432,486 |
(C2×C6).26(C3×Dic3) = C18×C3⋊C8 | central extension (φ=1) | 144 | | (C2xC6).26(C3xDic3) | 432,126 |
(C2×C6).27(C3×Dic3) = Dic3×C2×C18 | central extension (φ=1) | 144 | | (C2xC6).27(C3xDic3) | 432,373 |
(C2×C6).28(C3×Dic3) = C3×C6×C3⋊C8 | central extension (φ=1) | 144 | | (C2xC6).28(C3xDic3) | 432,469 |