Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C3⋊D4

Direct product G=N×Q with N=C3⋊S3 and Q=C3⋊D4
dρLabelID
C3⋊S3×C3⋊D472C3:S3xC3:D4432,685

Semidirect products G=N:Q with N=C3⋊S3 and Q=C3⋊D4
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C3⋊D4) = C62⋊D6φ: C3⋊D4/C22S3 ⊆ Out C3⋊S33612+C3:S3:(C3:D4)432,323
C3⋊S32(C3⋊D4) = C2×C33⋊D4φ: C3⋊D4/C6C22 ⊆ Out C3⋊S3244C3:S3:2(C3:D4)432,755
C3⋊S33(C3⋊D4) = D6⋊S32φ: C3⋊D4/Dic3C2 ⊆ Out C3⋊S3488-C3:S3:3(C3:D4)432,600
C3⋊S34(C3⋊D4) = D64S32φ: C3⋊D4/D6C2 ⊆ Out C3⋊S3248+C3:S3:4(C3:D4)432,599
C3⋊S35(C3⋊D4) = C6224D6φ: C3⋊D4/C2×C6C2 ⊆ Out C3⋊S3244C3:S3:5(C3:D4)432,696

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C3⋊D4
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C3⋊D4) = C33⋊SD16φ: C3⋊D4/C3D4 ⊆ Out C3⋊S3248C3:S3.1(C3:D4)432,738
C3⋊S3.2(C3⋊D4) = C333SD16φ: C3⋊D4/C3D4 ⊆ Out C3⋊S32416+C3:S3.2(C3:D4)432,739
C3⋊S3.3(C3⋊D4) = S32⋊Dic3φ: C3⋊D4/C6C22 ⊆ Out C3⋊S3244C3:S3.3(C3:D4)432,580
C3⋊S3.4(C3⋊D4) = (C3×C6).8D12φ: C3⋊D4/C6C22 ⊆ Out C3⋊S3248+C3:S3.4(C3:D4)432,586
C3⋊S3.5(C3⋊D4) = C6.PSU3(𝔽2)φ: C3⋊D4/C6C22 ⊆ Out C3⋊S3488C3:S3.5(C3:D4)432,592
C3⋊S3.6(C3⋊D4) = C33⋊(C4⋊C4)φ: C3⋊D4/Dic3C2 ⊆ Out C3⋊S3488-C3:S3.6(C3:D4)432,569
C3⋊S3.7(C3⋊D4) = D6⋊(C32⋊C4)φ: C3⋊D4/D6C2 ⊆ Out C3⋊S3248+C3:S3.7(C3:D4)432,568
C3⋊S3.8(C3⋊D4) = C6211Dic3φ: C3⋊D4/C2×C6C2 ⊆ Out C3⋊S3244C3:S3.8(C3:D4)432,641

׿
×
𝔽