Extensions 1→N→G→Q→1 with N=C3×A4 and Q=C12

Direct product G=N×Q with N=C3×A4 and Q=C12
dρLabelID
A4×C3×C12108A4xC3xC12432,697

Semidirect products G=N:Q with N=C3×A4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊C12 = C625Dic3φ: C12/C2C6 ⊆ Out C3×A4366-(C3xA4):C12432,251
(C3×A4)⋊2C12 = C4×C32⋊A4φ: C12/C4C3 ⊆ Out C3×A4363(C3xA4):2C12432,333
(C3×A4)⋊3C12 = C32×A4⋊C4φ: C12/C6C2 ⊆ Out C3×A4108(C3xA4):3C12432,615
(C3×A4)⋊4C12 = C3×C6.7S4φ: C12/C6C2 ⊆ Out C3×A4366(C3xA4):4C12432,618
(C3×A4)⋊5C12 = C3×Dic3×A4φ: C12/C6C2 ⊆ Out C3×A4366(C3xA4):5C12432,624

Non-split extensions G=N.Q with N=C3×A4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×A4).C12 = C4×C9⋊A4φ: C12/C4C3 ⊆ Out C3×A41083(C3xA4).C12432,326
(C3×A4).2C12 = C9×A4⋊C4φ: C12/C6C2 ⊆ Out C3×A41083(C3xA4).2C12432,242
(C3×A4).3C12 = A4×C36φ: trivial image1083(C3xA4).3C12432,325

׿
×
𝔽