Extensions 1→N→G→Q→1 with N=C3xQ8 and Q=C18

Direct product G=NxQ with N=C3xQ8 and Q=C18
dρLabelID
Q8xC3xC18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=C3xQ8 and Q=C18
extensionφ:Q→Out NdρLabelID
(C3xQ8):C18 = S3xQ8:C9φ: C18/C3C6 ⊆ Out C3xQ81444(C3xQ8):C18432,268
(C3xQ8):2C18 = C6xQ8:C9φ: C18/C6C3 ⊆ Out C3xQ8432(C3xQ8):2C18432,334
(C3xQ8):3C18 = C9xQ8:2S3φ: C18/C9C2 ⊆ Out C3xQ81444(C3xQ8):3C18432,158
(C3xQ8):4C18 = S3xQ8xC9φ: C18/C9C2 ⊆ Out C3xQ81444(C3xQ8):4C18432,366
(C3xQ8):5C18 = C9xQ8:3S3φ: C18/C9C2 ⊆ Out C3xQ81444(C3xQ8):5C18432,367
(C3xQ8):6C18 = SD16xC3xC9φ: C18/C9C2 ⊆ Out C3xQ8216(C3xQ8):6C18432,218
(C3xQ8):7C18 = C4oD4xC3xC9φ: trivial image216(C3xQ8):7C18432,409

Non-split extensions G=N.Q with N=C3xQ8 and Q=C18
extensionφ:Q→Out NdρLabelID
(C3xQ8).C18 = Q8:C9:3S3φ: C18/C3C6 ⊆ Out C3xQ81444(C3xQ8).C18432,267
(C3xQ8).2C18 = C2xQ8:C27φ: C18/C6C3 ⊆ Out C3xQ8432(C3xQ8).2C18432,41
(C3xQ8).3C18 = Q8.C54φ: C18/C6C3 ⊆ Out C3xQ82162(C3xQ8).3C18432,42
(C3xQ8).4C18 = C3xQ8.C18φ: C18/C6C3 ⊆ Out C3xQ8216(C3xQ8).4C18432,337
(C3xQ8).5C18 = C9xC3:Q16φ: C18/C9C2 ⊆ Out C3xQ81444(C3xQ8).5C18432,159
(C3xQ8).6C18 = SD16xC27φ: C18/C9C2 ⊆ Out C3xQ82162(C3xQ8).6C18432,26
(C3xQ8).7C18 = Q16xC27φ: C18/C9C2 ⊆ Out C3xQ84322(C3xQ8).7C18432,27
(C3xQ8).8C18 = Q16xC3xC9φ: C18/C9C2 ⊆ Out C3xQ8432(C3xQ8).8C18432,221
(C3xQ8).9C18 = Q8xC54φ: trivial image432(C3xQ8).9C18432,55
(C3xQ8).10C18 = C4oD4xC27φ: trivial image2162(C3xQ8).10C18432,56

׿
x
:
Z
F
o
wr
Q
<