Extensions 1→N→G→Q→1 with N=C18 and Q=C3xQ8

Direct product G=NxQ with N=C18 and Q=C3xQ8
dρLabelID
Q8xC3xC18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=C18 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
C18:(C3xQ8) = C2xC36.C6φ: C3xQ8/C4C6 ⊆ Aut C18144C18:(C3xQ8)432,352
C18:2(C3xQ8) = C2xQ8x3- 1+2φ: C3xQ8/Q8C3 ⊆ Aut C18144C18:2(C3xQ8)432,408
C18:3(C3xQ8) = C6xDic18φ: C3xQ8/C12C2 ⊆ Aut C18144C18:3(C3xQ8)432,340

Non-split extensions G=N.Q with N=C18 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
C18.1(C3xQ8) = Dic9:C12φ: C3xQ8/C4C6 ⊆ Aut C18144C18.1(C3xQ8)432,145
C18.2(C3xQ8) = C36:C12φ: C3xQ8/C4C6 ⊆ Aut C18144C18.2(C3xQ8)432,146
C18.3(C3xQ8) = C4:C4x3- 1+2φ: C3xQ8/Q8C3 ⊆ Aut C18144C18.3(C3xQ8)432,208
C18.4(C3xQ8) = C3xDic9:C4φ: C3xQ8/C12C2 ⊆ Aut C18144C18.4(C3xQ8)432,129
C18.5(C3xQ8) = C3xC4:Dic9φ: C3xQ8/C12C2 ⊆ Aut C18144C18.5(C3xQ8)432,130
C18.6(C3xQ8) = C4:C4xC27central extension (φ=1)432C18.6(C3xQ8)432,22
C18.7(C3xQ8) = Q8xC54central extension (φ=1)432C18.7(C3xQ8)432,55
C18.8(C3xQ8) = C4:C4xC3xC9central extension (φ=1)432C18.8(C3xQ8)432,206

׿
x
:
Z
F
o
wr
Q
<