Extensions 1→N→G→Q→1 with N=C18 and Q=C3×Q8

Direct product G=N×Q with N=C18 and Q=C3×Q8
dρLabelID
Q8×C3×C18432Q8xC3xC18432,406

Semidirect products G=N:Q with N=C18 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
C18⋊(C3×Q8) = C2×C36.C6φ: C3×Q8/C4C6 ⊆ Aut C18144C18:(C3xQ8)432,352
C182(C3×Q8) = C2×Q8×3- 1+2φ: C3×Q8/Q8C3 ⊆ Aut C18144C18:2(C3xQ8)432,408
C183(C3×Q8) = C6×Dic18φ: C3×Q8/C12C2 ⊆ Aut C18144C18:3(C3xQ8)432,340

Non-split extensions G=N.Q with N=C18 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
C18.1(C3×Q8) = Dic9⋊C12φ: C3×Q8/C4C6 ⊆ Aut C18144C18.1(C3xQ8)432,145
C18.2(C3×Q8) = C36⋊C12φ: C3×Q8/C4C6 ⊆ Aut C18144C18.2(C3xQ8)432,146
C18.3(C3×Q8) = C4⋊C4×3- 1+2φ: C3×Q8/Q8C3 ⊆ Aut C18144C18.3(C3xQ8)432,208
C18.4(C3×Q8) = C3×Dic9⋊C4φ: C3×Q8/C12C2 ⊆ Aut C18144C18.4(C3xQ8)432,129
C18.5(C3×Q8) = C3×C4⋊Dic9φ: C3×Q8/C12C2 ⊆ Aut C18144C18.5(C3xQ8)432,130
C18.6(C3×Q8) = C4⋊C4×C27central extension (φ=1)432C18.6(C3xQ8)432,22
C18.7(C3×Q8) = Q8×C54central extension (φ=1)432C18.7(C3xQ8)432,55
C18.8(C3×Q8) = C4⋊C4×C3×C9central extension (φ=1)432C18.8(C3xQ8)432,206

׿
×
𝔽