Extensions 1→N→G→Q→1 with N=He3 and Q=C2xD4

Direct product G=NxQ with N=He3 and Q=C2xD4
dρLabelID
C2xD4xHe372C2xD4xHe3432,404

Semidirect products G=N:Q with N=He3 and Q=C2xD4
extensionφ:Q→Out NdρLabelID
He3:(C2xD4) = C2xHe3:D4φ: C2xD4/C2D4 ⊆ Out He3366+He3:(C2xD4)432,530
He3:2(C2xD4) = C3:S3:D12φ: C2xD4/C4C22 ⊆ Out He33612+He3:2(C2xD4)432,301
He3:3(C2xD4) = C12.86S32φ: C2xD4/C4C22 ⊆ Out He3366+He3:3(C2xD4)432,302
He3:4(C2xD4) = C2xHe3:2D4φ: C2xD4/C22C22 ⊆ Out He372He3:4(C2xD4)432,320
He3:5(C2xD4) = C2xHe3:3D4φ: C2xD4/C22C22 ⊆ Out He372He3:5(C2xD4)432,322
He3:6(C2xD4) = C62:D6φ: C2xD4/C22C22 ⊆ Out He33612+He3:6(C2xD4)432,323
He3:7(C2xD4) = C62:2D6φ: C2xD4/C22C22 ⊆ Out He3366He3:7(C2xD4)432,324
He3:8(C2xD4) = C2xHe3:4D4φ: C2xD4/C2xC4C2 ⊆ Out He372He3:8(C2xD4)432,350
He3:9(C2xD4) = C2xHe3:5D4φ: C2xD4/C2xC4C2 ⊆ Out He372He3:9(C2xD4)432,386
He3:10(C2xD4) = D4xC32:C6φ: C2xD4/D4C2 ⊆ Out He33612+He3:10(C2xD4)432,360
He3:11(C2xD4) = D4xHe3:C2φ: C2xD4/D4C2 ⊆ Out He3366He3:11(C2xD4)432,390
He3:12(C2xD4) = C2xHe3:6D4φ: C2xD4/C23C2 ⊆ Out He372He3:12(C2xD4)432,377
He3:13(C2xD4) = C2xHe3:7D4φ: C2xD4/C23C2 ⊆ Out He372He3:13(C2xD4)432,399


׿
x
:
Z
F
o
wr
Q
<