Extensions 1→N→G→Q→1 with N=He3 and Q=C4○D4

Direct product G=N×Q with N=He3 and Q=C4○D4
dρLabelID
C4○D4×He3726C4oD4xHe3432,410

Semidirect products G=N:Q with N=He3 and Q=C4○D4
extensionφ:Q→Out NdρLabelID
He31(C4○D4) = C12⋊S3⋊S3φ: C4○D4/C4C22 ⊆ Out He37212+He3:1(C4oD4)432,295
He32(C4○D4) = C12.84S32φ: C4○D4/C4C22 ⊆ Out He3726He3:2(C4oD4)432,296
He33(C4○D4) = C12.91S32φ: C4○D4/C4C22 ⊆ Out He3726He3:3(C4oD4)432,297
He34(C4○D4) = C12.S32φ: C4○D4/C4C22 ⊆ Out He37212-He3:4(C4oD4)432,299
He35(C4○D4) = C62.8D6φ: C4○D4/C22C22 ⊆ Out He37212-He3:5(C4oD4)432,318
He36(C4○D4) = C62.9D6φ: C4○D4/C22C22 ⊆ Out He3726He3:6(C4oD4)432,319
He37(C4○D4) = C62.36D6φ: C4○D4/C2×C4C2 ⊆ Out He3726He3:7(C4oD4)432,351
He38(C4○D4) = C62.47D6φ: C4○D4/C2×C4C2 ⊆ Out He3726He3:8(C4oD4)432,387
He39(C4○D4) = C62.13D6φ: C4○D4/D4C2 ⊆ Out He37212-He3:9(C4oD4)432,361
He310(C4○D4) = C62.16D6φ: C4○D4/D4C2 ⊆ Out He3726He3:10(C4oD4)432,391
He311(C4○D4) = (Q8×He3)⋊C2φ: C4○D4/Q8C2 ⊆ Out He37212+He3:11(C4oD4)432,369
He312(C4○D4) = He35D4⋊C2φ: C4○D4/Q8C2 ⊆ Out He3726He3:12(C4oD4)432,395


׿
×
𝔽