Extensions 1→N→G→Q→1 with N=C3×S3×Dic3 and Q=C2

Direct product G=N×Q with N=C3×S3×Dic3 and Q=C2
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=C3×S3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×S3×Dic3)⋊1C2 = (S3×C6).D6φ: C2/C1C2 ⊆ Out C3×S3×Dic3248+(C3xS3xDic3):1C2432,606
(C3×S3×Dic3)⋊2C2 = D6.S32φ: C2/C1C2 ⊆ Out C3×S3×Dic3488-(C3xS3xDic3):2C2432,607
(C3×S3×Dic3)⋊3C2 = S3×C3⋊D12φ: C2/C1C2 ⊆ Out C3×S3×Dic3248+(C3xS3xDic3):3C2432,598
(C3×S3×Dic3)⋊4C2 = D6.4S32φ: C2/C1C2 ⊆ Out C3×S3×Dic3488-(C3xS3xDic3):4C2432,608
(C3×S3×Dic3)⋊5C2 = D6.3S32φ: C2/C1C2 ⊆ Out C3×S3×Dic3248+(C3xS3xDic3):5C2432,609
(C3×S3×Dic3)⋊6C2 = C3×D12⋊S3φ: C2/C1C2 ⊆ Out C3×S3×Dic3484(C3xS3xDic3):6C2432,644
(C3×S3×Dic3)⋊7C2 = C3×D6.4D6φ: C2/C1C2 ⊆ Out C3×S3×Dic3244(C3xS3xDic3):7C2432,653
(C3×S3×Dic3)⋊8C2 = C3×S3×C3⋊D4φ: C2/C1C2 ⊆ Out C3×S3×Dic3244(C3xS3xDic3):8C2432,658
(C3×S3×Dic3)⋊9C2 = S32×Dic3φ: C2/C1C2 ⊆ Out C3×S3×Dic3488-(C3xS3xDic3):9C2432,594
(C3×S3×Dic3)⋊10C2 = S3×C6.D6φ: C2/C1C2 ⊆ Out C3×S3×Dic3248+(C3xS3xDic3):10C2432,595
(C3×S3×Dic3)⋊11C2 = C3×D125S3φ: C2/C1C2 ⊆ Out C3×S3×Dic3484(C3xS3xDic3):11C2432,643
(C3×S3×Dic3)⋊12C2 = C3×D6.3D6φ: C2/C1C2 ⊆ Out C3×S3×Dic3244(C3xS3xDic3):12C2432,652
(C3×S3×Dic3)⋊13C2 = S32×C12φ: trivial image484(C3xS3xDic3):13C2432,648

Non-split extensions G=N.Q with N=C3×S3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×S3×Dic3).1C2 = S3×C322Q8φ: C2/C1C2 ⊆ Out C3×S3×Dic3488-(C3xS3xDic3).1C2432,603
(C3×S3×Dic3).2C2 = C3×S3×Dic6φ: C2/C1C2 ⊆ Out C3×S3×Dic3484(C3xS3xDic3).2C2432,642

׿
×
𝔽