Extensions 1→N→G→Q→1 with N=C8×He3 and Q=C2

Direct product G=N×Q with N=C8×He3 and Q=C2
dρLabelID
C2×C8×He3144C2xC8xHe3432,210

Semidirect products G=N:Q with N=C8×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×He3)⋊1C2 = He34D8φ: C2/C1C2 ⊆ Out C8×He3726+(C8xHe3):1C2432,118
(C8×He3)⋊2C2 = He35D8φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):2C2432,176
(C8×He3)⋊3C2 = He36SD16φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):3C2432,117
(C8×He3)⋊4C2 = He37SD16φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):4C2432,175
(C8×He3)⋊5C2 = D8×He3φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):5C2432,216
(C8×He3)⋊6C2 = C8×C32⋊C6φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):6C2432,115
(C8×He3)⋊7C2 = C8×He3⋊C2φ: C2/C1C2 ⊆ Out C8×He3723(C8xHe3):7C2432,173
(C8×He3)⋊8C2 = He35M4(2)φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):8C2432,116
(C8×He3)⋊9C2 = He36M4(2)φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):9C2432,174
(C8×He3)⋊10C2 = SD16×He3φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):10C2432,219
(C8×He3)⋊11C2 = M4(2)×He3φ: C2/C1C2 ⊆ Out C8×He3726(C8xHe3):11C2432,213

Non-split extensions G=N.Q with N=C8×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×He3).1C2 = He34Q16φ: C2/C1C2 ⊆ Out C8×He31446-(C8xHe3).1C2432,114
(C8×He3).2C2 = He35Q16φ: C2/C1C2 ⊆ Out C8×He31446(C8xHe3).2C2432,177
(C8×He3).3C2 = Q16×He3φ: C2/C1C2 ⊆ Out C8×He31446(C8xHe3).3C2432,222
(C8×He3).4C2 = He33C16φ: C2/C1C2 ⊆ Out C8×He31446(C8xHe3).4C2432,30
(C8×He3).5C2 = He34C16φ: C2/C1C2 ⊆ Out C8×He31443(C8xHe3).5C2432,33
(C8×He3).6C2 = C16×He3φ: trivial image1443(C8xHe3).6C2432,35

׿
×
𝔽