Extensions 1→N→G→Q→1 with N=C3 and Q=C2.PSU3(𝔽2)

Direct product G=N×Q with N=C3 and Q=C2.PSU3(𝔽2)
dρLabelID
C3×C2.PSU3(𝔽2)488C3xC2.PSU(3,2)432,591

Semidirect products G=N:Q with N=C3 and Q=C2.PSU3(𝔽2)
extensionφ:Q→Aut NdρLabelID
C31(C2.PSU3(𝔽2)) = C6.PSU3(𝔽2)φ: C2.PSU3(𝔽2)/C2×C32⋊C4C2 ⊆ Aut C3488C3:1(C2.PSU(3,2))432,592
C32(C2.PSU3(𝔽2)) = C6.2PSU3(𝔽2)φ: C2.PSU3(𝔽2)/C2×C32⋊C4C2 ⊆ Aut C3488C3:2(C2.PSU(3,2))432,593

Non-split extensions G=N.Q with N=C3 and Q=C2.PSU3(𝔽2)
extensionφ:Q→Aut NdρLabelID
C3.(C2.PSU3(𝔽2)) = C2.SU3(𝔽2)central stem extension (φ=1)723C3.(C2.PSU(3,2))432,239

׿
×
𝔽