Extensions 1→N→G→Q→1 with N=S3×Dic3 and Q=S3

Direct product G=N×Q with N=S3×Dic3 and Q=S3
dρLabelID
S32×Dic3488-S3^2xDic3432,594

Semidirect products G=N:Q with N=S3×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×Dic3)⋊1S3 = S3×C3⋊D12φ: S3/C3C2 ⊆ Out S3×Dic3248+(S3xDic3):1S3432,598
(S3×Dic3)⋊2S3 = D6.4S32φ: S3/C3C2 ⊆ Out S3×Dic3488-(S3xDic3):2S3432,608
(S3×Dic3)⋊3S3 = D6.3S32φ: S3/C3C2 ⊆ Out S3×Dic3248+(S3xDic3):3S3432,609
(S3×Dic3)⋊4S3 = (S3×C6).D6φ: S3/C3C2 ⊆ Out S3×Dic3248+(S3xDic3):4S3432,606
(S3×Dic3)⋊5S3 = D6.S32φ: S3/C3C2 ⊆ Out S3×Dic3488-(S3xDic3):5S3432,607
(S3×Dic3)⋊6S3 = S3×C6.D6φ: trivial image248+(S3xDic3):6S3432,595

Non-split extensions G=N.Q with N=S3×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×Dic3).S3 = S3×C322Q8φ: S3/C3C2 ⊆ Out S3×Dic3488-(S3xDic3).S3432,603

׿
×
𝔽