Extensions 1→N→G→Q→1 with N=S3×Dic3 and Q=C6

Direct product G=N×Q with N=S3×Dic3 and Q=C6
dρLabelID
S3×C6×Dic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=S3×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×Dic3)⋊1C6 = C3×D12⋊S3φ: C6/C3C2 ⊆ Out S3×Dic3484(S3xDic3):1C6432,644
(S3×Dic3)⋊2C6 = C3×D6.4D6φ: C6/C3C2 ⊆ Out S3×Dic3244(S3xDic3):2C6432,653
(S3×Dic3)⋊3C6 = C3×S3×C3⋊D4φ: C6/C3C2 ⊆ Out S3×Dic3244(S3xDic3):3C6432,658
(S3×Dic3)⋊4C6 = C3×D125S3φ: C6/C3C2 ⊆ Out S3×Dic3484(S3xDic3):4C6432,643
(S3×Dic3)⋊5C6 = C3×D6.3D6φ: C6/C3C2 ⊆ Out S3×Dic3244(S3xDic3):5C6432,652
(S3×Dic3)⋊6C6 = S32×C12φ: trivial image484(S3xDic3):6C6432,648

Non-split extensions G=N.Q with N=S3×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×Dic3).C6 = C3×S3×Dic6φ: C6/C3C2 ⊆ Out S3×Dic3484(S3xDic3).C6432,642

׿
×
𝔽