Extensions 1→N→G→Q→1 with N=S3xDic3 and Q=C6

Direct product G=NxQ with N=S3xDic3 and Q=C6
dρLabelID
S3xC6xDic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=S3xDic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3xDic3):1C6 = C3xD12:S3φ: C6/C3C2 ⊆ Out S3xDic3484(S3xDic3):1C6432,644
(S3xDic3):2C6 = C3xD6.4D6φ: C6/C3C2 ⊆ Out S3xDic3244(S3xDic3):2C6432,653
(S3xDic3):3C6 = C3xS3xC3:D4φ: C6/C3C2 ⊆ Out S3xDic3244(S3xDic3):3C6432,658
(S3xDic3):4C6 = C3xD12:5S3φ: C6/C3C2 ⊆ Out S3xDic3484(S3xDic3):4C6432,643
(S3xDic3):5C6 = C3xD6.3D6φ: C6/C3C2 ⊆ Out S3xDic3244(S3xDic3):5C6432,652
(S3xDic3):6C6 = S32xC12φ: trivial image484(S3xDic3):6C6432,648

Non-split extensions G=N.Q with N=S3xDic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3xDic3).C6 = C3xS3xDic6φ: C6/C3C2 ⊆ Out S3xDic3484(S3xDic3).C6432,642

׿
x
:
Z
F
o
wr
Q
<