Extensions 1→N→G→Q→1 with N=C6.D6 and Q=S3

Direct product G=N×Q with N=C6.D6 and Q=S3
dρLabelID
S3×C6.D6248+S3xC6.D6432,595

Semidirect products G=N:Q with N=C6.D6 and Q=S3
extensionφ:Q→Out NdρLabelID
C6.D61S3 = C3⋊S34D12φ: S3/C3C2 ⊆ Out C6.D6248+C6.D6:1S3432,602
C6.D62S3 = D6.S32φ: S3/C3C2 ⊆ Out C6.D6488-C6.D6:2S3432,607
C6.D63S3 = Dic3.S32φ: S3/C3C2 ⊆ Out C6.D6248+C6.D6:3S3432,612
C6.D64S3 = C3⋊S3.2D12φ: S3/C3C2 ⊆ Out C6.D6244C6.D6:4S3432,579
C6.D65S3 = Dic36S32φ: trivial image488-C6.D6:5S3432,596

Non-split extensions G=N.Q with N=C6.D6 and Q=S3
extensionφ:Q→Out NdρLabelID
C6.D6.1S3 = C335(C2×Q8)φ: S3/C3C2 ⊆ Out C6.D6488-C6.D6.1S3432,604
C6.D6.2S3 = C33⋊C4⋊C4φ: S3/C3C2 ⊆ Out C6.D6484C6.D6.2S3432,581

׿
×
𝔽