Extensions 1→N→G→Q→1 with N=C3 and Q=C3xGL2(F3)

Direct product G=NxQ with N=C3 and Q=C3xGL2(F3)
dρLabelID
C32xGL2(F3)72C3^2xGL(2,3)432,614

Semidirect products G=N:Q with N=C3 and Q=C3xGL2(F3)
extensionφ:Q→Aut NdρLabelID
C3:(C3xGL2(F3)) = C3xC6.6S4φ: C3xGL2(F3)/C3xSL2(F3)C2 ⊆ Aut C3484C3:(C3xGL(2,3))432,617

Non-split extensions G=N.Q with N=C3 and Q=C3xGL2(F3)
extensionφ:Q→Aut NdρLabelID
C3.1(C3xGL2(F3)) = C32.GL2(F3)φ: C3xGL2(F3)/C3xSL2(F3)C2 ⊆ Aut C37212+C3.1(C3xGL(2,3))432,245
C3.2(C3xGL2(F3)) = C3xQ8:D9φ: C3xGL2(F3)/C3xSL2(F3)C2 ⊆ Aut C31444C3.2(C3xGL(2,3))432,246
C3.3(C3xGL2(F3)) = C32:2GL2(F3)φ: C3xGL2(F3)/C3xSL2(F3)C2 ⊆ Aut C37212+C3.3(C3xGL(2,3))432,248
C3.4(C3xGL2(F3)) = C9xGL2(F3)central extension (φ=1)722C3.4(C3xGL(2,3))432,241

׿
x
:
Z
F
o
wr
Q
<