Extensions 1→N→G→Q→1 with N=D6⋊S3 and Q=S3

Direct product G=N×Q with N=D6⋊S3 and Q=S3
dρLabelID
S3×D6⋊S3488-S3xD6:S3432,597

Semidirect products G=N:Q with N=D6⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D6⋊S31S3 = C33⋊D8φ: S3/C3C2 ⊆ Out D6⋊S3244D6:S3:1S3432,582
D6⋊S32S3 = D64S32φ: S3/C3C2 ⊆ Out D6⋊S3248+D6:S3:2S3432,599
D6⋊S33S3 = (S3×C6)⋊D6φ: S3/C3C2 ⊆ Out D6⋊S3248+D6:S3:3S3432,601
D6⋊S34S3 = D6.4S32φ: S3/C3C2 ⊆ Out D6⋊S3488-D6:S3:4S3432,608
D6⋊S35S3 = D6⋊S3⋊S3φ: S3/C3C2 ⊆ Out D6⋊S3488-D6:S3:5S3432,610
D6⋊S36S3 = (S3×C6).D6φ: trivial image248+D6:S3:6S3432,606

Non-split extensions G=N.Q with N=D6⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D6⋊S3.S3 = C337SD16φ: S3/C3C2 ⊆ Out D6⋊S3244D6:S3.S3432,584

׿
×
𝔽